Programming by Example

Game Plan

Intention: How to describe a problem?

Multimodal Specifications

- Mathematical Logic
- Examples
- Natural Languages

Invention: How to produce a program?

- Synthesis Algorithms
- Deduction
- Enumeration
- Neural Approaches

Adaptation: How to check if the produced program is the desired or

- nterdisciplinary
- Optimization
- Human-Computer Interaction

The Synthesis Conundrum

I don't want to program

The machine should program for me

But I need to tell the machine what I want

I need a notation to describe what I want with great precision with little room for ambiguity

So instead of "programming"

I will write detailed step by step descriptions of system behavior In a notation that requires great mathematical sophistication That I have never used before (unlike my favorite programming language which I started using in grade school)

Intention Pillar

Most Useful Target

FlashFill: a feature of Excel 2013 (Gulwani et al.)

Data	Review	v View		Developer	
58]		
Text to Columns	Flash Fill	Remov Duplicat	re tes Vali	Data dation	Consolida [.]
			Data Tools		
	В		(С	D
Participants			Coun	try	
Ronnie Ar	n, UK 💧	UK			
Tom Boon					
Sally Brook, USA					
Jeremy Hi					
Mattias Waldau, USA					
Robert Furlan, France					
David White, UK					

PBE vs. Few-Shot Learning

2."I hated this film. The acting was terrible, and the storyline was boring." \rightarrow Negative 3. "An amazing experience! The visuals and music were breathtaking." \rightarrow Positive

Language Model "Although the film had some great moments, the pacing was too slow, and I lost interest." → Negative

Variants of PBE

Programming by Demonstration

How it works

- The user *performs* the task.
- The system captures key actions and patterns.
- A program is automatically inferred from these demonstrations.

Applications

- Robotics and Automation
- User Interface Design

PBE vs. PBD

Programming by Example (PBE)

- Generally input/output
- E.g., factorial(6) = 720

Programming by Demonstration (PBD)

- In addition to input/output, show a trace of the computation
- E.g., factorial(6) = 6 * (5 * (4 * (3 * (2 * 1)))) = 720
- Pioneered by the <u>Pygmalion</u> system

PBE : PBD = Few-Shot-Learning : Chain-of-Thought

Direct Manipulation

Motivation

• How to apply PBE in graphic design?

How it works

- What you see is what get (WYSIWYG) for graphical user interfaces
- Direct manipulate on the desired output
- Demo: sketch-n-sketch (Chugh et al.)

https://people.cs.uchicago.edu/~brianhempel/sketch-n-sketch-pldi2016-slides.pdf