
Intent Formalization

PBE is not always enough

• Pros

• Ease of use

• Broader base of users

• Error detection

• Cons

• Ambiguity in intent

• Lack of Formal Guarantee

• One needs to formally specify the desired behavior of the target program!

Example

int f(int x, int y)
{
 z = 0;

 i = x;

 while (i) {

 z = z + y;

 i = i – 1;

 }

 return z;

}

Formal spec: 𝑜𝑢𝑡 = 𝑥 ⋅ 𝑦

PBE: 𝑥 𝒚 𝒐𝒖𝒕

1 1 1

2 3 6

2 -1 -2

4 0 0

3 4 12

Who is going to
write the formal
specification?

• Most users are not trained to write
specifications using logics or other rigorous
mathematical languages

• The synthesizer is sneaky and always finds a
workaround (e.g., an infinite loop) for an
incomplete specification

• Traditional PBE • Synthesize formal specs from examples

Examples to the rescue!

Examples

Formal Specs

From Examples to RegEx

Regular Expressions

Regular expressions are a syntactic tool for defining regular languages
• Common feature in many languages; but the basics of regular expressions are much

simpler than what you see in languages like Perl or Python
• String literals combined by choice and star
• “Regular” languages: Regular expressions can be represented as deterministic finite

automata (DFA), and vice versa

alice@example.com
bob.smith@company.org
charlie123@mail.co.uk
david@my-email.com

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$

(123) 456-7890
987-654-3210
(555) 123-4567
111-222-3333

^(\(\d{3}\)\s?|\d{3}[-.\s])\d{3}[-.\s]?\d{4}$

mailto:alice@example.com
mailto:bob.smith@company.org
mailto:charlie123@mail.co.uk
mailto:david@my-email.com

Angluin’s L* Algorithm (1987)

Membership Query
• Is the string 𝑠 accepted by the target language?
• Answer: yes/no

Equivalence Query
• Does the candidate DFA match the target language?
• Answer: yes/counterexample
• Done if the answer is yes!

Query

Answer/Example

Student (Synthesizer) Minimally Adequate Teacher (User)

DFA

Idea: maintain a candidate DFA

0. Represent the DFA as an Observation Table (ignored)
1. Start with a simple hypothesis DFA (usually an empty state machine).
2. Use equivalence queries to check if the current hypothesis matches the target

DFA.
3. If not match, use membership queries to refine the DFA with respect to the

counterexample.
4. Repeat from step 2 until it correctly recognizes the language.

Example

Alphabet: {𝑎, 𝑏}

Equivalence?

Cex: 𝑏𝑎

𝑎, 𝑏

Example

Alphabet: {𝑎, 𝑏}

Membership(𝑏)?

Yes

𝑎, 𝑏

𝑏𝑎

But how?

Example

Alphabet: {𝑎, 𝑏}

Membership(𝑏𝑏)?

No

𝑎
𝑏

?

𝑎

𝑏

Example

After several rounds of queries…

Equivalence?
𝑎

𝑏 𝑎

𝑏

𝑏

𝑎

𝑏

𝑎

Model Learning
“Even though faster algorithms have been proposed since then, the most efficient
learning algorithms that are being used today all follow Angluin’s approach of a
minimally adequate teacher (MAT).” – Frits Vaandrager

Comparative Synthesis

Motivation: Network Design

• Plenty of source-destination pairs
• Multiple paths per s-d pair
• Multiple traffic classes
• Capacity/security restriction
• Given demand, figure out allocations

It is not too hard to find a mediocre network design.

But what is the optimal solution?

Bandwidth Enforcer (BwE) [2]
• Different classes have different bandwidth requirements

and different priorities

Fair share as concave functions

How to enforce fairness requirements for flows across
different traffic classes?

Maximize
O throughput, latency
= 2 ∗ througput − max 750 − throughput, 0

−5 ∗ latency − 9 ∗ max(latency − 75, 0)

Software-driven WAN [1]
• Maximize throughput
• Minimize latency How to decide

the knobs?

How to trade-off multiple objectives (throughput
and latency)?

How to decide
fair shares?

[1] Achieving High Utilization with Software-Driven WAN. [Hong et al., SIGCOMM’13]

[2] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing. [Kumar et al., SIGCOMM’15]

The synthesis conundrum remains

Give me the
optimization target!

𝑂 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
= 2 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔𝑝𝑢𝑡 − max 750 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 0

−5 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 9 ∗ max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 75, 0)
Give me an optimal

program!

“Maximize throughput”
“Minimize latency”

But didn’t we have PBE?

Input Output

Throughput: 10Gbps
Latency: 100ms

… ??

Throughput: 7Gbps
Latency: 300ms

…
??

Throughput: 10Gbps
Latency: 100ms

…

Throughput: 7Gbps
Latency: 300ms

…
vs.

Throughput: 10Gbps
Latency: 100ms

…

Let’s compare!

“Comparison is the thief of joy.”
 --Theodore Roosevelt

Net10Q: Comparative Synthesis for Network Design
Learner’s Goal:

Spend a budgeted number of queries and
to produce a near-optimal program from
the perspective of the teacher

w/ Yanjun Wang, Chuan Jiang, Zixuan Li, Sanjay Rao. [HotNets’19 + POPL’23]

Quality of Solution

P0 P1 P2 P8

Quality = 0.7

Worse Better

How close a solution is to the ground truth optimal?

Quality of Solution:

The “relative rank” of the solution among all solutions

P1 is better than or equal to 70% of
possible solutions

Computing the exact quality
can be expensive, we
estimate the quality by
sampling

Example

Unknown Ground truth target function:
 𝑂 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 2 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔𝑝𝑢𝑡 − max 750 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 0 − 5 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 9 ∗ max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 75, 0)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7

So
lu

ti
o

n
 q

u
al

it
y

Number of queries

P0(thrpt = 205.2, ltncy = 10.3)

P7(thrpt = 392.9, ltncy = 25.3)

Propose
P1(thrpt = 470.2, ltncy = 33.0)

Propose
P2(thrpt = 385.2, ltncy = 24.5)

Propose
P3

Propose
P4

Compare
P5 thrpt = 405.4, ltncy = 26.5
P6(thrpt = 377.8, ltncy = 23.8)

✓

P2(thrpt = 385.2, ltncy = 24.5)

P1(thrpt = 470.2, ltncy = 33.0)

Propose
P7(thrpt = 392.9, ltncy = 25.3)

✓
✗ ✗

✓

✓

How does the synthesizer work?

A Voting-Guided Learning Algorithm

• Maintains a Pareto candidate set

• Each query can prune the search space, one way or the other

• Greedily prune the candidate set by making the most informative query (i.e.,
maximizing the worst-case space cut)

• Re-generate more candidates when the candidate set becomes too small

Convergence Guarantee

(How fast does the output solution approach the optimal?)

Theorem
 The voting-guided learning algorithm guarantees a
logarithmic rate of convergence. (the median

quality of solution is at least 2
−1

𝑛+1 after 𝑛 queries).
The bound is tight.

Proof idea: Every query discards at least one
randomly generated candidate.

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

G
u

a
ra

n
te

e
d

 s
o

lu
ti

o
n

 q
u

al
it

y

Number of queries

Can the algorithm converge faster?

(Yes, when the search space is sortable.)

Target functions

Pareto Optimal
Programs

𝑡𝑖(𝑃)

𝑃
Example
 If there are two competing metrics
(e.g., throughput and latency) such that
for each metric continued improvement
leads to diminishing marginal utility, the
search space is sortable.

Can the algorithm converge faster?

(Yes, when the search space is sortable.)

Theorem
 When the target function space is sortable, the voting-guided learning
algorithm guarantees a linear rate of convergence. (the median quality of

solution is at least 1 −
1

Ω(1.5𝑛)
 after 𝑛 queries). The bound is tight.

Proof idea: Every query discards at least one third of the candidates from the current PCS
pool.

Oracle-based Evaluation (Perfect Oracle)

Net10Q performed constantly better than Net10Q-NoPrune

Oracle-based Evaluation (Imperfect Oracle)

(BW on CWIX)

Net10Q vs. Net10Q-NoPrune (p=10)

Net10Q can handle moderate feedback inconsistency

Imperfect oracle model:

assigns a random reward that is sampled from a normal distribution (tunable by p)

User Feedback

Quality of recommendations

Average time per query across users

Was time taken acceptable?

Qualitative Comments
• Most users are satisfied with Net10Q’s

recommendations and response time.
• “The study was well done in my opinion.

It put the engineer/architect in a
position to make a qualified decision to
try and chose the most reasonable
outcome.” – an expert user

Can we learn
formal specification
from natural
languages?

• Again, examples are not comprehensive, and
good examples can be very expensive.

• Accurate specification may call for excessive
examples

• “Natural language will always remain the
basic interpretation of, and reservoir for, the
development of the artificial formalized
languages of science.” – Doris Bradley

Pre-LLM Age

FRET:
Controlled Natural Language
to Metric Temporal Logic
(MTL)

Conrad et al. A Compositional Proof Framework for FRETish Requirements[CPP’22]

Pre-LLM Age

Blasi et al. Translating Code Comments to Procedure Specifications [ISSTA’18]

Jdoctor: translating Javadoc to JML-style specifications

Pre-LLM Age

Pros
• Pattern matching for semi-structured languages, which is predictable,

understandable and adaptable
• Low computational cost

Cons
• Limited generalization
• Limited handling of ambiguities
• Manually defined patterns

NLP is the bread and butter of LLMs!

Open Question: How to evaluate LLM-
generated specs?

Shuvendu Lahiri proposed the notions of soundness and completeness with
respect to a set of input-output tests 𝑇:
• Soundness: all tests in 𝑇 satisfy 𝜙
• Complete measure: if 𝑖, 𝑜′ is a mutation from a test 𝑖, 𝑜 ∈ 𝑇, how likely 𝑖, 𝑜′ is

inconsistent with 𝜙

Problems
• Higher completeness measure is not always better (e.g., 𝑥 > 1.04562 is likely

overfitting; 𝑥 > 1 is more natural)
• What if test cases are not available (how about generate test cases?)

Open Question: What’s the best paradigm?

Natural Language Description

Examples Programs

Formal Specs

Workflow 1

Natural Language Description

Programs

Workflow 2

Natural Language Description

Formal Specs

Programs

Workflow 3

Natural Language Description

Formal Specs

Programs

Examples

Workflow 4

Natural Language Description

Formal Specs

Programs

Examples

Workflow n?

Figure out your own
workflow for your project!

	Slide 1: Intent Formalization
	Slide 2: PBE is not always enough
	Slide 3: Example
	Slide 4: Who is going to write the formal specification?
	Slide 5: Examples to the rescue!
	Slide 6: From Examples to RegEx
	Slide 7: Regular Expressions
	Slide 8: Angluin’s L* Algorithm (1987)
	Slide 9: Idea: maintain a candidate DFA
	Slide 10: Example
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Model Learning
	Slide 15: Comparative Synthesis
	Slide 16: Motivation: Network Design
	Slide 17: But what is the optimal solution?
	Slide 18: The synthesis conundrum remains
	Slide 19: But didn’t we have PBE?
	Slide 20: Net10Q: Comparative Synthesis for Network Design
	Slide 21: Quality of Solution
	Slide 22: Example
	Slide 23: How does the synthesizer work?
	Slide 24: Convergence Guarantee
	Slide 25: Can the algorithm converge faster?
	Slide 26: Can the algorithm converge faster?
	Slide 27: Oracle-based Evaluation (Perfect Oracle)
	Slide 28: Oracle-based Evaluation (Imperfect Oracle)
	Slide 29: User Feedback
	Slide 30: Can we learn formal specification from natural languages?
	Slide 31: Pre-LLM Age
	Slide 32: Pre-LLM Age
	Slide 33: Pre-LLM Age
	Slide 34: NLP is the bread and butter of LLMs!
	Slide 35: Open Question: How to evaluate LLM-generated specs?
	Slide 36: Open Question: What’s the best paradigm?
	Slide 37: Workflow 1
	Slide 38: Workflow 2
	Slide 39: Workflow 3
	Slide 40: Workflow 4
	Slide 41: Workflow n?

