
Intent Formalization



PBE is not always enough

• Pros

• Ease of use

• Broader base of users

• Error detection

• Cons

• Ambiguity in intent

• Lack of Formal Guarantee

• One needs to formally specify the desired behavior of the target program!



Example

int f(int x, int y)
{
 z = 0;

 i = x;

 while (i) {

  z = z + y;

  i = i – 1;

 }

 return z;

}

Formal spec:   𝑜𝑢𝑡 = 𝑥 ⋅ 𝑦

PBE: 𝑥 𝒚 𝒐𝒖𝒕
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Who is going to 
write the formal 
specification? 

• Most users are not trained to write 
specifications using logics or other rigorous 
mathematical languages

• The synthesizer is sneaky and always finds a 
workaround (e.g., an infinite loop) for an 
incomplete specification



• Traditional PBE • Synthesize formal specs from examples

Examples to the rescue!

Examples

Formal Specs



From Examples to RegEx 



Regular Expressions

Regular expressions are a syntactic tool for defining regular languages
• Common feature in many languages; but the basics of regular expressions are much 

simpler than what you see in languages like Perl or Python
• String literals combined by choice and star
• “Regular” languages: Regular expressions can be represented as deterministic finite 

automata (DFA), and vice versa

alice@example.com
bob.smith@company.org
charlie123@mail.co.uk
david@my-email.com

^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$

(123) 456-7890
987-654-3210
(555) 123-4567
111-222-3333

^(\(\d{3}\)\s?|\d{3}[-.\s])\d{3}[-.\s]?\d{4}$

mailto:alice@example.com
mailto:bob.smith@company.org
mailto:charlie123@mail.co.uk
mailto:david@my-email.com


Angluin’s L* Algorithm (1987)

Membership Query
• Is the string 𝑠 accepted by the target language?
• Answer: yes/no

Equivalence Query
• Does the candidate DFA match the target language?
• Answer: yes/counterexample
• Done if the answer is yes!

Query

Answer/Example

Student (Synthesizer) Minimally Adequate Teacher  (User)

DFA



Idea: maintain a candidate DFA 

0.  Represent the DFA as an Observation Table (ignored)
1. Start with a simple hypothesis DFA (usually an empty state machine).
2. Use equivalence queries to check if the current hypothesis matches the target 

DFA.
3. If not match, use membership queries to refine the DFA with respect to the 

counterexample.
4. Repeat from step 2 until it correctly recognizes the language.



Example

Alphabet: {𝑎, 𝑏}

Equivalence?

Cex: 𝑏𝑎

𝑎, 𝑏



Example

Alphabet: {𝑎, 𝑏}

Membership(𝑏)?

Yes

𝑎, 𝑏

𝑏𝑎

But how?



Example

Alphabet: {𝑎, 𝑏}

Membership(𝑏𝑏)?

No

𝑎
𝑏

?

𝑎

𝑏



Example

After several rounds of queries…

Equivalence?
𝑎

𝑏 𝑎

𝑏

𝑏

𝑎

𝑏

𝑎



Model Learning
“Even though faster algorithms have been proposed since then, the most efficient 
learning algorithms that are being used today all follow Angluin’s approach of a 
minimally adequate teacher (MAT).” – Frits Vaandrager



Comparative Synthesis



Motivation: Network Design

• Plenty of source-destination pairs
• Multiple paths per s-d pair
• Multiple traffic classes
• Capacity/security restriction
• Given demand, figure out allocations

It is not too hard to find a mediocre network design.



But what is the optimal solution?

Bandwidth Enforcer (BwE) [2] 
• Different classes have different bandwidth requirements 

and different priorities

Fair share as concave functions

How to enforce fairness requirements for flows across 
different traffic classes?

Maximize
O throughput, latency
=  2 ∗ througput − max 750 − throughput, 0

−5 ∗ latency − 9 ∗ max(latency − 75, 0)

Software-driven WAN [1] 
• Maximize throughput
• Minimize latency How to decide 

the knobs?

How to trade-off multiple objectives (throughput 
and latency)?

How to decide 
fair shares?

[1] Achieving High Utilization with Software-Driven WAN. [Hong et al., SIGCOMM’13]

[2] BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing. [Kumar et al., SIGCOMM’15]



The synthesis conundrum remains

Give me the 
optimization target!

𝑂 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
=  2 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔𝑝𝑢𝑡 − max 750 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 0

−5 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 9 ∗ max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 75, 0)
Give me an optimal 

program!

“Maximize throughput”
“Minimize latency”



But didn’t we have PBE?

Input Output

Throughput: 10Gbps
Latency: 100ms

… ??

Throughput: 7Gbps
Latency: 300ms

…
??

Throughput: 10Gbps
Latency: 100ms

…

Throughput: 7Gbps
Latency: 300ms

…
vs.

Throughput: 10Gbps
Latency: 100ms

…

Let’s compare!

“Comparison is the thief of joy.” 
     --Theodore Roosevelt



Net10Q: Comparative Synthesis for Network Design
Learner’s Goal: 

Spend a budgeted number of queries and 
to produce a near-optimal program from 
the perspective of the teacher

w/ Yanjun Wang, Chuan Jiang, Zixuan Li, Sanjay Rao. [HotNets’19 + POPL’23]



Quality of Solution

P0 P1 P2 P8

Quality = 0.7

Worse Better

How close a solution is to the ground truth optimal? 

Quality of Solution:

The “relative rank” of the solution among all solutions

P1 is better than or equal to 70% of 
possible solutions

Computing the exact quality 
can be expensive, we 
estimate the quality by 
sampling



Example

Unknown Ground truth target function: 
        𝑂 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  2 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔𝑝𝑢𝑡 − max 750 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡, 0 − 5 ∗ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 9 ∗ max(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 75, 0)
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P0(thrpt = 205.2, ltncy = 10.3)

P7(thrpt = 392.9, ltncy = 25.3)
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P1(thrpt = 470.2, ltncy = 33.0)
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P2(thrpt = 385.2, ltncy = 24.5)

Propose
P3
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P4

Compare
P5 thrpt = 405.4,  ltncy = 26.5
P6(thrpt = 377.8,  ltncy = 23.8) 

✓

P2(thrpt = 385.2, ltncy = 24.5)

P1(thrpt = 470.2, ltncy = 33.0)

Propose
P7(thrpt = 392.9, ltncy = 25.3)

✓
✗ ✗

✓

✓



How does the synthesizer work?

A Voting-Guided Learning Algorithm

• Maintains a Pareto candidate set

• Each query can prune the search space, one way or the other

• Greedily prune the candidate set by making the most informative query (i.e., 
maximizing the worst-case space cut)

• Re-generate more candidates when the candidate set becomes too small 



Convergence Guarantee

(How fast does the output solution approach the optimal?)

Theorem
    The voting-guided learning algorithm guarantees a 
logarithmic rate of convergence. (the median 

quality of solution is at least 2
−1

𝑛+1 after 𝑛 queries). 
The bound is tight.

Proof idea: Every query discards at least one 
randomly generated candidate. 
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Can the algorithm converge faster?

(Yes, when the search space is sortable.)

Target functions

Pareto Optimal 
Programs

𝑡𝑖(𝑃)

𝑃
Example
    If there are two competing metrics 
(e.g., throughput and latency) such that 
for each metric continued improvement 
leads to diminishing marginal utility, the 
search space is sortable.



Can the algorithm converge faster?

(Yes, when the search space is sortable.)

Theorem
    When the target function space is sortable, the voting-guided learning 
algorithm guarantees a linear rate of convergence. (the median quality of 

solution is at least 1 −
1

Ω(1.5𝑛)
 after 𝑛 queries). The bound is tight.

Proof idea: Every query discards at least one third of the candidates from the current PCS 
pool. 



Oracle-based Evaluation (Perfect Oracle)

Net10Q performed constantly better than Net10Q-NoPrune



Oracle-based Evaluation (Imperfect Oracle)

(BW on CWIX)

Net10Q vs. Net10Q-NoPrune (p=10)

Net10Q can handle moderate feedback inconsistency

Imperfect oracle model:

assigns a random reward that is sampled from a normal distribution (tunable by p)



User Feedback

Quality of recommendations

Average time per query across users

Was time taken acceptable?

Qualitative Comments
• Most users are satisfied with Net10Q’s 

recommendations and response time.
• “The study was well done in my opinion. 

It put the engineer/architect in a 
position to make a qualified decision to 
try and chose the most reasonable 
outcome.”  – an expert user



Can we learn 
formal specification 
from natural 
languages? 

• Again, examples are not comprehensive, and 
good examples can be very expensive.

• Accurate specification may call for excessive 
examples

• “Natural language will always remain the 
basic interpretation of, and reservoir for, the 
development of the artificial formalized 
languages of science.” – Doris Bradley



Pre-LLM Age

FRET: 
Controlled Natural Language 
to Metric Temporal Logic 
(MTL)

Conrad et al. A Compositional Proof Framework for FRETish Requirements[CPP’22]



Pre-LLM Age

Blasi et al. Translating Code Comments to Procedure Specifications [ISSTA’18]

Jdoctor: translating Javadoc to JML-style specifications



Pre-LLM Age

Pros
• Pattern matching for semi-structured languages, which is predictable, 

understandable and adaptable
• Low computational cost

Cons
• Limited generalization
• Limited handling of ambiguities
• Manually defined patterns



NLP is the bread and butter of LLMs!



Open Question: How to evaluate LLM-
generated specs?

Shuvendu Lahiri proposed the notions of soundness and completeness with 
respect to a set of input-output tests 𝑇:
• Soundness: all tests in 𝑇 satisfy 𝜙
• Complete measure: if 𝑖, 𝑜′  is a mutation from a test 𝑖, 𝑜 ∈ 𝑇, how likely 𝑖, 𝑜′  is 

inconsistent with 𝜙 

Problems
• Higher completeness measure is not always better (e.g., 𝑥 > 1.04562 is likely 

overfitting; 𝑥 > 1 is more natural)
• What if test cases are not available (how about generate test cases?) 



Open Question: What’s the best paradigm?

Natural Language Description

Examples Programs

Formal Specs



Workflow 1

Natural Language Description

Programs



Workflow 2

Natural Language Description

Formal Specs

Programs



Workflow 3

Natural Language Description

Formal Specs

Programs

Examples



Workflow 4

Natural Language Description

Formal Specs

Programs

Examples



Workflow n?

Figure out your own 
workflow for your project!
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