Formal Verification

Testing/Typing are not sufficient

e Easy to argue that a given input will produce a

HOW tO CheCh if a given output (though the halting problem is
already undecidable).
prOduced progrqm e Easy to argue that a property always holds at a

single program point

meets the formql e Also easy to argue that all constructs in the
SpeCiﬁCQtion? language will preserve some property (like

when we proved type soundness).

* Much harder to prove general properties of
the behavior of a program on all inputs.

Undecidability of Program Verification

Rice’s Theorem (1951): Every nontrivial semantic
property of recursively enumerable languages is
undecidable.

* Recursively enumerable languages are equivalent to Turing machines (and
almost all languages you program).

Proof: Reduce from the halting problem of Turing machines.

1967 1979

DeMillo, Lipton and Perlis

Hoare, Misra,
Leavens, Shankar

A. M. Turing Robert W. Floyd Reports and Arices

® ® ® Social Processes and Proofs of Theorems ®
and Programs
Friday, 24th June [1949] Richard A. De Millo
Georgia Institute of Technology
Checklng a lar, ge r outine by Dr A. Turing. Richard J. Lipton and Alan J. Perlis

Yale University

How can one check a routine in the sense of making sure
that it is right?

In order that the man who checks may not have too
difficult a task the programmer should make a number of
definite assertions which can be checked individually. and

Robert W. Floyd

ASSIGNING MEANINGS TO PROGRAMS:!

Introduction. This paper attempts to provide an adequate basis for
formal definitions of the meanings of programs in appropriately defined
programming languages, in such a way that a rigorous standard is established

The Verified Software Initiative: A Manifesto

C.A.R. HOARE

Microsoft Research

JAYADEV MISRA
The University of Texas at Austin

GARY T. LEAVENS
ITowa State University

and

NATARAJAN SHANKAR

SRI International Computer Science Laboratory

1. INTRODUCTION

We propose an ambitious and long-term research program toward the construction of
error-free software systems. Our manifesto represents a consensus position that has
emerged from a series of national and international meetings, workshops, and confer-
ences held from 2004 to 2007. The research project, the Verified Software Initiative,

Success Stories

Infrastructure:

.‘J |
23T »
Yices2 Coq &%”

Astrée
Move

1..'::& / m ESC/Java2 CPA/

Verifiers: Mc Dafny f

Success Stories: Hyper-V sel 4 IronFleet AIRBUS

Verve OS ExpressOS ’zvd Iem

Axiomatic Semantics
(AKA program logics)

A system for proving properties about programs

Key idea:

* We can define the semantics of a construct by describing its effect on assertions about the
program state.

Two components
* Alanguage for stating assertions (“the assertion logic”)

* Can be First-Order Logic (FOL), a specialized logic such as separation logic, or Higher-Order Logic
(HOL), which can encode the others.

* Many specialized languages developed over the years:
e Z, Larch, JML, Spec#
* Deductive rules (“the program logic”) for establishing the truth of such assertions

The Basics

{A} stmt {B}

" S

Precondition Postcondition

Hoare triple

- If the program state before execution satisfies A, and the execution of stmt terminates,
the program state after execution satisfies B

- This is a partial correctness assertion.

- We sometimes use the notation

[A] stmt [B]

to denote a total correctness assertion
which means you also have to prove termination.

What do assertions mean?

The language of assertions:
e A :=true|false|e; =e, |e;<e, |A;NA, | 1A | Vx.A
ce =01 lx|lyl--le +eyle e

Notation 0 E A means that the assertion holds on state o .
* Aisinterpreted inductively over state o as a FO structure.
e Ex. cEAANDB iff. cEAando EB

Derivation Rules

Derivation rules for each language construct

F{AADb}c; {B} F+{AAnotbhjc,{B}

F{A[x - e]}x := e {A} - {A}if b thenc,else c, {B}
- (A Abjc {4} -4} (€} F{Cic, (B)
- {A}while b do c {A A not b} - 1{A}cy; ¢, {B}

Can be combined with the rule of consequence

FA =2 Ar{A}c{B}-B=>D
- {4 c {B'}

Soundness and Completeness

What does it mean for our derivation rules to be sound?

What does it mean for them to be complete?

So, are they complete?
{true} x:=x {p}
{true} c {false}

Relative Completeness in the sense of Cook (1974)
Expressible enough to express intermediate assertions, e.g., loop invariants

The following program purports to compute the
square of a given integer n (not necessarily positive).

Example ji=1;

while (j '=n) {
i=i+2%+1;
Ji=)+

}

return i;

Example

while (j '=n) {
i=i+2%+1,;
Ji=)+

}

returni;

{i=n*n}

Example

{true}

inti, j;

{»?}

i:=1;

{»?}

j=1;

{77}

while (j !=n) {
=i+ 2%+ 1;
j =i+

}

{»?}

returni;

{i = n*n}

{true}

inti, j;

{true} //strongest postcondition
i:=1;

{i=1} //strongest postcondition
ji=1;

{i=1 A j=1} //strongest postcondition

EXG mple {27} //loop invariant

while (j '=n) {
=i+ 2%+ 1
j=j+1;

}

{i = n*n}//weakest precondition
returni;

{i=n*n}

{true}

inti, j;

{true} //strongest postcondition
i:=1;

{i=1} //strongest postcondition
ji=1;

{i=1 A j=1} //strongest postcondition

Example {i =j*j} //loop invariant

while (j '=n) {
=i+ 2%+ 1
j=j+1;

}

{i=n*n}//weakest postcondition
returni;

{i=n*n}

{true}

inti, j;

{true} //strongest postcondition
i:=1;

{i=1} //strongest postcondition
=1

{i=1 A j=1} //strongest postcondition

{i=j*j} //loop invariant

while (j '=n) {
Example
=i+ 2%+1;

{i=0+1)*(+1) Aj!=n}
=i
{i=j*jAj-11=n}
}
{i = n*n} //weakest postcondition

return i;

{i=n*n}

Total Correctness

[A] stmt [B]

Hoare triple
- If A holds before stmt, stmt terminates and B will hold afterward.

Total Correctness

Definition: a well-ordered set is a set S with a total order > such that every non-empty
subset of S has a least element.

E.g., (N, >) is aw.o. set, (Z,>) is not

(N?,>) where (a,b) > (a’,b")ifa>a’,ora=a and b > b’

Total Correctness

Termination:
1. find a ranking function rank: ProgStates — (N, >)
2. find a set of cutpoints (program points) to cut the program

3. prove for any cutpoint pc, and any two program states Sy, S,, if (51, pc) reaches
(S,, pc) in an execution sequence, then rank(S;) > rank(S,)

Example: while (x>5) x:=x-1;

Total Correctness

Example:
inti,j;
| :=1;
j=1

Try Dafny!

while (j !=n) {
=i+ 2%+1;
=+l

}

return i;

\Verification and synthesis put together

Formal Specification Oracle-Guided Synthesis (OGIS)
| Verifier (not quite an oracle)
Synthesizer candidate
inductive invariants

QN
W s ranking functions
SS
Nk etc.
ip W : <

counterexample ya

v

Provably-Correct Program

Impossible Trilemma

Expressive properties

/N

General-purpose programs —— Automaticity

From the perspective of synthesis:
A synthesizer usually needs to verify many candidate programs
The verifier should serve as an oracle
automation and efficiency are most important
The goal is to synthesize program that can be automatically verified
Automated reasoning is possible in some domains!

Logical Reasoning for Verification

x=1;
y=1;
while (*) {
X=x+2; ‘ Vi, yi(x=1Ay=1D->x+y=>2
y=y+1; Ve, y,x'y'(x+y=22Ax =x+2Ay =y +2)>x'+y =2
}

Q: is x+y>=2 always true? Q: Are these formulae valid in arithmetic?

Satisfiability Modulo Theories

First-Order Theories

Q: Which statements are true in arithmetic/set-theory/groups/fields?

A theory is a set of FOL sentences in a FO language
* Fix a language for arithmetic: (<, +,-,0,1) (why no —, <?)

How to define a theory?
* Fix a standard model: N (or Z?)
* Peano Arithmetic: PA = (N, <, +,-,0,1)
* Theory of PA: Th(PA) = {¢ | ¢ is a sentence in (<, +,-,0,1) and N E ¢}

Another way to define a theory
* Fix a set of axioms X, then Th(Z) = {¢ | Z + ¢}

Common Theories

Presburger Arithmetic: Pr4 = (N, +,0,1)

Integers: Int = (Z,+,—,<,...,—1,0,1, ...)

Reals: Real = (R, +,—,-,0,1)

Rationals: RA = (Q,+,—,-,0,1)

Arrays: Arr = (AllArrays, read(-,), Write(-,-,-))

* Strings (many variants): Str = (AllStrings,+, len, in,., replaceAll, ...)

What Theories are Decidable?

Decidable theories
« PrA = (N,+,0,1): double exponential
e Int=(Z,+,—,<, ..,—1,0,1, ...): triple exponential
* Real = (R, +,—,-,0,1): double exponential
* RA=(Q,+,—,,0,1): double exponential (P if quantifier-free)
* Quantifier-free Arr = (AllArrays, read(:,-), write(:,,,-)): NP-complete
* Quantifier-free Equality (plain FOL): NP-complete
e Quantifier-free String Equations: PSPACE-complete

Undecidable theories
« PA=(N,<,+,,0,1) (Godel’s Incompleteness Theorem, 1931)
(Z,+,,1,—1,0) (Tarski-Mostowski, 1949)
Arr = (AllArrays, read(:,"), write(:,,"))
Theory of Rings RI (Mal'cev, 1961)
Set Theory ZF (Tarski, 1949)
Theory of String Equations (Quine, 1946)

Deciding Rational Arithmetic

Definition: A set of formulae X admits quantifier elimination if
for any formula 3x@(x, y) € X, there is a quantifier free ¢'(y) €
Y such that I3x@(x,y) = @' (y).

Theorem: RA admits quantifier elimination.

Rational Arithmetic OE

Step 1: Normalization
* Convert @ to Negation Normal Form (NNF)

Step 2: Remove Negation
ca(s>t)=t>sVt=s
e a(s=t)=2s>tvt>s

Step 3: Solve for x in Ax@
*3x>T7Ty=>x> gy

* Collect all terms t; comparedto x, e.g., x > ty,t, > x,x = t3, ...

ti+tj

* Instantiate x in dx¢ with all possible , © and —oo

Example

e Ax(2x = vy)

*dx(3x+1=10A7x—6 > 7)

Solving OF Rational Arithmetic

Solve satisfiability of 3x¢@(x)
* Each conjunctionis Ajaq jxq + ==+ ay jxi > ¢j
* Just linear programming!
e LPissolvable in (weakly) polynomial time

Theorem: Th(RA) is decidable in double exponential time.

Automqted * Many "ch.eories ar'e only QF-decidable
e Quantified theories are usually too

reasoning fOCLISQS expensive, even if they are decidable

e QF theories are compositional (under

on QF theories some conditions)

How to combine decidable theories?

How to combine decidable theories?

Ll = (er Flr Cl) LZ = (RZi FZ) CZ)
Thq is a decidable theory over L4 Th, is a decidable theory over L,
D, is a decision procedure for Thy D, is a decision procedure for Th,

Ll U L2 == (Rl U RZ)Fl U Fz, C]_ U Cz)
ThiUTh, ={@ | Thy UTh, + ¢}
Can we build a decision procedure for Th; U Th, from D; and D,?

Example

PrA is decidable Arr is QF-decidable

Isalx +x] >2Aa[4] = 1 Ax > 1Ax < 3satisfiable in PrA U Arr ?

The combined theory is undecidable in general!

Nelson-Oppen Combination

Theorem (1979): If
* Thy is a QF-decidable theory over L,
* Th, is a QF-decidable theory over L,
L NL,=0
 Both Thy and Th, are stably infinite (intuitively, both theories have
infinite models)

then Thy U Th, is QF-decidable!

Combinable theories: {PrA4, Int, Real, RA} + Equality + Arr

Nelson-Oppen Combination

Step 1: Purification

* Splitan L; U L,-formula ¢ into an L;-formula ¢, and an L,-formula ¢,
such that @ and @, A @, are equisatisfiable

e Example: f(x + g(y)) < gla)+ f(b)

!

ti =9()

_ t, =x+t
=1 A
ty = g(a) > AT

ts = f(b)

Nelson-Oppen Combination

Step 2: Guess and Check
ty =g9)
ts=f(tz) A fz <_;C -l-;—t;fl
ty=g(@) 5 T 4TS
ts = f(b)
\ t1 =1
\ ! \ | —
Guess an equality: ' fo =t
' =1y
ti # g J/ .
t, # ts | M, and M, should agree on the equality
ty # ts between shared variables!

-
~ -
S —e_-"

Solve the two theories separately!
(if both theories are in NP, so is the combined procedure)

Satisfiability Modulo Theories

Nelson-Oppen Method + DPLL Procedure (solving propositional
constraints using backtracking)

Standard Interchange Format

Supports arithmetic, bit-vectors, uninterpreted functions, arrays, data
types, ...

A plethora of well-engineered solvers (23, CVC4, etc.)

Try Z3-play

https://jfmc.github.io/z3-play/

Example

salx +x] >2Aal4] =1Ax>1Ax < 3satisfiable in PrA U Arr?

(declare-fun x () Int)

(declare-const a (Array Int Int))

(assert (> (select a (+ x x)) 2))
(assert (= (select a 4) 1))
(assert (> x 1))

(assert (< x 3))

(check-sat)
(get-model)
(exit)
unsat
(error "line 8 column 10: model 1s not available")

Example

Isalx +x] >2Aal4] =1Ax >1Ax < 3satisfiable in Real U Arr ?

(declare—-fun x () Real)
(declare-const a (Array Real Real))
(assert (> (select a (+ x x)) 2))
(assert (= (select a 4) 1))

(assert (> x 1))

(assert (< x 3))

(check—-sat)

sat
(get-model) (model
. (define-fun a () (Array Real Real)
(exit) (store ((as const (Array Real Real)) 1.0) 3.0 (/ 5.0 2.0)))
(define-fun x () Real

(/ 3.0 2.0))

	Slide 1: Formal Verification
	Slide 2: How to check if a produced program meets the formal specification?
	Slide 3: Undecidability of Program Verification
	Slide 4: Program Verification
	Slide 5: Success Stories
	Slide 6: Axiomatic Semantics (AKA program logics)
	Slide 7: The Basics
	Slide 8: What do assertions mean?
	Slide 9: Derivation Rules
	Slide 10: Soundness and Completeness
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Total Correctness
	Slide 18: Total Correctness
	Slide 19: Total Correctness
	Slide 20: Total Correctness
	Slide 21: Verification and synthesis put together
	Slide 22: Impossible Trilemma
	Slide 23: Logical Reasoning for Verification
	Slide 24: Satisfiability Modulo Theories
	Slide 25: First-Order Theories
	Slide 26: Common Theories
	Slide 28: What Theories are Decidable?
	Slide 29: Deciding Rational Arithmetic
	Slide 30: Rational Arithmetic QE
	Slide 31: Example
	Slide 32: Solving QF Rational Arithmetic
	Slide 35: Automated reasoning focuses on QF theories
	Slide 36: How to combine decidable theories?
	Slide 37: Example
	Slide 38: Nelson-Oppen Combination
	Slide 39: Nelson-Oppen Combination
	Slide 40: Nelson-Oppen Combination
	Slide 41: Satisfiability Modulo Theories
	Slide 42: Example
	Slide 43: Example

