
Formal Verification

How to check if a
produced program
meets the formal
specification?

• Testing/Typing are not sufficient

• Easy to argue that a given input will produce a
given output (though the halting problem is
already undecidable).

• Easy to argue that a property always holds at a
single program point

• Also easy to argue that all constructs in the
language will preserve some property (like
when we proved type soundness).

• Much harder to prove general properties of
the behavior of a program on all inputs.

Undecidability of Program Verification

• Recursively enumerable languages are equivalent to Turing machines (and
almost all languages you program).

• Proof: Reduce from the halting problem of Turing machines.

Rice’s Theorem (1951): Every nontrivial semantic
property of recursively enumerable languages is
undecidable.

Program Verification
1949 20091979

A. M. Turing Robert W. Floyd

Hoare, Misra,
Leavens, Shankar

DeMillo, Lipton and Perlis

1967

Success Stories

Infrastructure:

Verifiers:

Success Stories:

Verve OS

Move

Coq

Axiomatic Semantics
(AKA program logics)
• A system for proving properties about programs

• Key idea:

• We can define the semantics of a construct by describing its effect on assertions about the
program state.

• Two components

• A language for stating assertions (“the assertion logic”)

• Can be First-Order Logic (FOL), a specialized logic such as separation logic, or Higher-Order Logic
(HOL), which can encode the others.

• Many specialized languages developed over the years:

• Z, Larch, JML, Spec#

• Deductive rules (“the program logic”) for establishing the truth of such assertions

The Basics

o Hoare triple
- If the program state before execution satisfies A, and the execution of stmt terminates,

the program state after execution satisfies B

- This is a partial correctness assertion.

- We sometimes use the notation

 to denote a total correctness assertion

which means you also have to prove termination.

[A] stmt [B]

Precondition Postcondition

{A} stmt {B}

What do assertions mean?

• The language of assertions:

• 𝐴 ≔ true ∣ false ∣ 𝑒1 = 𝑒2 ∣ 𝑒1 ≤ 𝑒2 ∣ 𝐴1 ∧ 𝐴2 ∣ ¬𝐴 ∣ ∀𝑥. 𝐴

• 𝑒 ≔ 0 ∣ 1 ∣ ⋯ ∣ 𝑥 ∣ 𝑦 ∣ ⋯ ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2

• Notation 𝜎 ⊨ 𝐴 means that the assertion holds on state 𝜎 .

• 𝐴 is interpreted inductively over state 𝜎 as a FO structure.

• Ex. 𝜎 ⊨ 𝐴 ∧ 𝐵 iff. 𝜎 ⊨ 𝐴 and 𝜎 ⊨ 𝐵

Derivation Rules

o Derivation rules for each language construct

o Can be combined with the rule of consequence

Soundness and Completeness

• What does it mean for our derivation rules to be sound?

• What does it mean for them to be complete?

• So, are they complete?

• {true} x:=x {p}

• {true} c {false}

• Relative Completeness in the sense of Cook (1974)

• Expressible enough to express intermediate assertions, e.g., loop invariants

Example

• The following program purports to compute the
square of a given integer n (not necessarily positive).

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• return i;

Example

• {true}

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• return i;

• {i = n*n}

Example

• {true}

• int i, j;

• {??}

• i := 1;

• {??}

• j := 1;

• {??}

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• {??}

• return i;

• {i = n*n}

Example

• {true}

• int i, j;

• {true} //strongest postcondition

• i := 1;

• {i=1} //strongest postcondition

• j := 1;

• {i=1 ∧ j=1} //strongest postcondition

• {??} //loop invariant

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• {i = n*n} //weakest precondition

• return i;

• {i = n*n}

Example

• {true}

• int i, j;

• {true} //strongest postcondition

• i := 1;

• {i=1} //strongest postcondition

• j := 1;

• {i=1 ∧ j=1} //strongest postcondition

• {i = j*j} //loop invariant

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• {i = n*n} //weakest postcondition

• return i;

• {i = n*n}

Example

• {true}

• int i, j;

• {true} //strongest postcondition

• i := 1;

• {i=1} //strongest postcondition

• j := 1;

• {i=1 ∧ j=1} //strongest postcondition

• {i = j*j} //loop invariant

• while (j != n) {

• {i = j*j ∧ j != n}

• i := i + 2*j + 1;

• {i = (j+1)*(j+1) ∧ j != n}

• j := j+1;

• {i = j*j ∧ j-1 != n}

• }

• {i = n*n} //weakest postcondition

• return i;

• {i = n*n}

Total Correctness

o Hoare triple

- If A holds before stmt, stmt terminates and B will hold afterward.

[A] stmt [B]

Total Correctness

• Definition: a well-ordered set is a set 𝑆 with a total order > such that every non-empty
subset of 𝑆 has a least element.

• E.g., ℕ, > is a w.o. set, ℤ, > is not

• ℕ2, > where 𝑎, 𝑏 > 𝑎′, 𝑏′ if 𝑎 > 𝑎′, or 𝑎 = 𝑎′ and 𝑏 > 𝑏′

Total Correctness

• Termination:

• 1. find a ranking function 𝑟𝑎𝑛𝑘: 𝑃𝑟𝑜𝑔𝑆𝑡𝑎𝑡𝑒𝑠 → (ℕ, >)

• 2. find a set of cutpoints (program points) to cut the program

• 3. prove for any cutpoint 𝑝𝑐, and any two program states 𝑆1, 𝑆2, if (𝑆1, 𝑝𝑐) reaches
(𝑆2, 𝑝𝑐) in an execution sequence, then 𝑟𝑎𝑛𝑘 𝑆1 > 𝑟𝑎𝑛𝑘(𝑆2)

• Example: while (x>5) x:=x-1;

Total Correctness

• Example:

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

• i := i + 2*j + 1;

• j := j+1;

• }

• return i;

Try Dafny!

Verification and synthesis put together

Specification

Synthesizer

ProgramProvably-Correct

candidate

counterexample

Verifier (not quite an oracle)

Oracle-Guided Synthesis (OGIS)

inductive invariants
ranking functions
 etc.

Formal

Impossible Trilemma

• From the perspective of synthesis:
A synthesizer usually needs to verify many candidate programs

The verifier should serve as an oracle

automation and efficiency are most important

The goal is to synthesize program that can be automatically verified

Automated reasoning is possible in some domains!

Expressive properties

AutomaticityGeneral-purpose programs

Logical Reasoning for Verification

x=1;
y=1;
while (*) {
 x=x+2;
 y=y+1;
}

Q: is x+y>=2 always true?

∀𝑥, 𝑦: 𝑥 = 1 ∧ 𝑦 = 1 → 𝑥 + 𝑦 ≥ 2
∀𝑥, 𝑦, 𝑥′𝑦′ 𝑥 + 𝑦 ≥ 2 ∧ 𝑥′ = 𝑥 + 2 ∧ 𝑦′ = 𝑦 + 2 → 𝑥′ + 𝑦′ ≥ 2

Q: Are these formulae valid in arithmetic?

Satisfiability Modulo Theories

First-Order Theories

• Q: Which statements are true in arithmetic/set-theory/groups/fields?

• A theory is a set of FOL sentences in a FO language
• Fix a language for arithmetic: (≤, +,⋅, 0,1) (why no −, <?)

• How to define a theory?
• Fix a standard model: ℕ (or ℤ?)

• Peano Arithmetic: 𝑃𝐴 = (ℕ, ≤, +,⋅, 0,1)

• Theory of PA: 𝑇ℎ(𝑃𝐴) = 𝜑 𝜑 is a sentence in ≤, +,⋅, 0,1 and ℕ ⊨ 𝜑}

• Another way to define a theory
• Fix a set of axioms Σ, then 𝑇ℎ Σ = 𝜑 Σ ⊢ 𝜑}

Common Theories

• Presburger Arithmetic: 𝑃𝑟𝐴 = ℕ, +, 0,1

• Integers: 𝐼𝑛𝑡 = (ℤ, +, −, <, … , −1,0,1, …)

• Reals: 𝑅𝑒𝑎𝑙 = (ℝ, +, −,⋅, 0,1)

• Rationals: 𝑅𝐴 = (ℚ, +, −,⋅, 0,1)

• Arrays: 𝐴𝑟𝑟 = AllArrays, 𝑟𝑒𝑎𝑑 ⋅,⋅ , 𝑤𝑟𝑖𝑡𝑒 ⋅,⋅,⋅

• Strings (many variants): 𝑆𝑡𝑟 = AllStrings,+, 𝑙𝑒𝑛, 𝑖𝑛𝑟𝑒 , 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐴𝑙𝑙, …

What Theories are Decidable?

• Decidable theories
• 𝑃𝑟𝐴 = ℕ, +, 0,1 : double exponential
• 𝐼𝑛𝑡 = (ℤ, +, −, <, … , −1,0,1, …): triple exponential
• 𝑅𝑒𝑎𝑙 = (ℝ, +, −,⋅, 0,1): double exponential
• 𝑅𝐴 = (ℚ, +, −,⋅, 0,1): double exponential (P if quantifier-free)
• Quantifier-free 𝐴𝑟𝑟 = (AllArrays, 𝑟𝑒𝑎𝑑(⋅,⋅), 𝑤𝑟𝑖𝑡𝑒(⋅,⋅,⋅)): NP-complete
• Quantifier-free Equality (plain FOL): NP-complete
• Quantifier-free String Equations: PSPACE-complete

• Undecidable theories
• 𝑃𝐴 = (ℕ, ≤, +,⋅, 0,1) (Gödel’s Incompleteness Theorem, 1931)
• (ℤ, +,⋅, 1, −1,0) (Tarski-Mostowski, 1949)

• 𝐴𝑟𝑟 = (AllArrays, 𝑟𝑒𝑎𝑑(⋅,⋅), 𝑤𝑟𝑖𝑡𝑒(⋅,⋅,⋅))
• Theory of Rings 𝑅𝐼 (Mal'cev, 1961)
• Set Theory 𝑍𝐹 (Tarski, 1949)
• Theory of String Equations (Quine, 1946)

Deciding Rational Arithmetic

• Definition: A set of formulae Σ admits quantifier elimination if
for any formula ∃ ҧ𝑥𝜑 ҧ𝑥, ത𝑦 ∈ Σ, there is a quantifier free 𝜑′ ത𝑦 ∈
Σ such that ∃ ҧ𝑥𝜑 ҧ𝑥, ത𝑦 ≡ 𝜑′ ത𝑦 .

Theorem: 𝑅𝐴 admits quantifier elimination.

Rational Arithmetic QE

• Step 1: Normalization
• Convert 𝜑 to Negation Normal Form (NNF)

• Step 2: Remove Negation
• ¬ 𝑠 > 𝑡 ⇒ 𝑡 > 𝑠 ∨ 𝑡 = 𝑠

• ¬ 𝑠 = 𝑡 ⇒ 𝑠 > 𝑡 ∨ 𝑡 > 𝑠

• Step 3: Solve for 𝑥 in ∃𝑥𝜑

• 3𝑥 > 7𝑦 ⇒ 𝑥 >
7

3
𝑦

• Collect all terms 𝑡𝑖 compared to 𝑥, e.g., 𝑥 > 𝑡1, 𝑡2 > 𝑥, 𝑥 = 𝑡3, …

• Instantiate 𝑥 in ∃𝑥𝜑 with all possible
𝑡𝑖+𝑡𝑗

2
, ∞ and −∞

Example

• ∃𝑥(2𝑥 = 𝑦)

• ∃𝑥(3𝑥 + 1 = 10 ∧ 7𝑥 − 6 > 7)

Solving QF Rational Arithmetic

• Solve satisfiability of ∃ ҧ𝑥𝜑(ҧ𝑥)
• Each conjunction is ٿ𝑗 𝑎1,𝑗𝑥1 + ⋯ + 𝑎𝑘,𝑗𝑥𝑘 > 𝑐𝑗

• Just linear programming!

• LP is solvable in (weakly) polynomial time

Theorem: Th(𝑅𝐴) is decidable in double exponential time.

Automated
reasoning focuses
on QF theories

• Many theories are only QF-decidable

• Quantified theories are usually too
expensive, even if they are decidable

• QF theories are compositional (under
some conditions)

How to combine decidable theories?

• How to combine decidable theories?

𝐿1 = (𝑅1, 𝐹1, 𝐶1)
𝑇ℎ1 is a decidable theory over 𝐿1

𝐷1 is a decision procedure for 𝑇ℎ1

𝐿2 = (𝑅2, 𝐹2, 𝐶2)
𝑇ℎ2 is a decidable theory over 𝐿2

𝐷2 is a decision procedure for 𝑇ℎ2

𝐿1 ∪ 𝐿2 = (𝑅1 ∪ 𝑅2, 𝐹1 ∪ 𝐹2, 𝐶1 ∪ 𝐶2)
𝑇ℎ1 ∪ 𝑇ℎ2 = 𝜑 𝑇ℎ1 ∪ 𝑇ℎ2 ⊢ 𝜑}

Can we build a decision procedure for 𝑇ℎ1 ∪ 𝑇ℎ2 from 𝐷1 and 𝐷2?

Example

𝑃𝑟𝐴 is decidable 𝐴𝑟𝑟 is QF-decidable

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑃𝑟𝐴 ∪ 𝐴𝑟𝑟 ?

The combined theory is undecidable in general!

Nelson-Oppen Combination

• Theorem (1979): If
• 𝑇ℎ1 is a QF-decidable theory over 𝐿1

• 𝑇ℎ2 is a QF-decidable theory over 𝐿2

• 𝐿1 ∩ 𝐿2 = ∅

• Both 𝑇ℎ1 and 𝑇ℎ2 are stably infinite (intuitively, both theories have
infinite models)

• then 𝑇ℎ1 ∪ 𝑇ℎ2 is QF-decidable!

• Combinable theories: 𝑃𝑟𝐴, 𝐼𝑛𝑡, 𝑅𝑒𝑎𝑙, 𝑅𝐴 + Equality + 𝐴𝑟𝑟

Nelson-Oppen Combination

• Step 1: Purification
• Split an 𝐿1 ∪ 𝐿2-formula 𝜑 into an 𝐿1-formula 𝜑1 and an 𝐿2-formula 𝜑2

such that 𝜑 and 𝜑1 ∧ 𝜑2 are equisatisfiable

• Example: 𝑓 𝑥 + 𝑔 𝑦 < 𝑔 𝑎 + 𝑓 𝑏

𝑡1 = 𝑔 𝑦
𝑡3 = 𝑓 𝑡2

𝑡4 = 𝑔(𝑎)
𝑡5 = 𝑓(𝑏)

𝑡2 = 𝑥 + 𝑡1

𝑡5 < 𝑡4 + 𝑡5
∧

Nelson-Oppen Combination

• Step 2: Guess and Check

𝑡1 = 𝑔 𝑦
𝑡3 = 𝑓 𝑡2

𝑡4 = 𝑔(𝑎)
𝑡5 = 𝑓(𝑏)

𝑡2 = 𝑥 + 𝑡1

𝑡5 < 𝑡4 + 𝑡5
∧

𝑡1 𝑡2𝑡3

𝑡4

𝑡5

𝑀1 and 𝑀2 should agree on the equality
between shared variables!

𝑀1

𝑀2

Guess an equality:

𝑡1 = 𝑡2

𝑡1 = 𝑡4

𝑡2 = 𝑡4

𝑡1 ≠ 𝑡5

𝑡2 ≠ 𝑡5

𝑡4 ≠ 𝑡5

Solve the two theories separately!
(if both theories are in NP, so is the combined procedure)

Satisfiability Modulo Theories

• Nelson-Oppen Method + DPLL Procedure (solving propositional
constraints using backtracking)

• Standard Interchange Format

• Supports arithmetic, bit-vectors, uninterpreted functions, arrays, data
types, …

• A plethora of well-engineered solvers (Z3, CVC4, etc.)

• Try Z3-play

https://jfmc.github.io/z3-play/

Example

• (declare-fun x () Int)

• (declare-const a (Array Int Int))

• (assert (> (select a (+ x x)) 2))

• (assert (= (select a 4) 1))

• (assert (> x 1))

• (assert (< x 3))

• (check-sat)

• (get-model)

• (exit)

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑃𝑟𝐴 ∪ 𝐴𝑟𝑟 ?

unsat

(error "line 8 column 10: model is not available")

Example

• (declare-fun x () Real)

• (declare-const a (Array Real Real))

• (assert (> (select a (+ x x)) 2))

• (assert (= (select a 4) 1))

• (assert (> x 1))

• (assert (< x 3))

• (check-sat)

• (get-model)

• (exit)

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑅𝑒𝑎𝑙 ∪ 𝐴𝑟𝑟 ?

sat

(model

 (define-fun a () (Array Real Real)

 (store ((as const (Array Real Real)) 1.0) 3.0 (/ 5.0 2.0)))

 (define-fun x () Real

 (/ 3.0 2.0))

)

	Slide 1: Formal Verification
	Slide 2: How to check if a produced program meets the formal specification?
	Slide 3: Undecidability of Program Verification
	Slide 4: Program Verification
	Slide 5: Success Stories
	Slide 6: Axiomatic Semantics (AKA program logics)
	Slide 7: The Basics
	Slide 8: What do assertions mean?
	Slide 9: Derivation Rules
	Slide 10: Soundness and Completeness
	Slide 11: Example
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Total Correctness
	Slide 18: Total Correctness
	Slide 19: Total Correctness
	Slide 20: Total Correctness
	Slide 21: Verification and synthesis put together
	Slide 22: Impossible Trilemma
	Slide 23: Logical Reasoning for Verification
	Slide 24: Satisfiability Modulo Theories
	Slide 25: First-Order Theories
	Slide 26: Common Theories
	Slide 28: What Theories are Decidable?
	Slide 29: Deciding Rational Arithmetic
	Slide 30: Rational Arithmetic QE
	Slide 31: Example
	Slide 32: Solving QF Rational Arithmetic
	Slide 35: Automated reasoning focuses on QF theories
	Slide 36: How to combine decidable theories?
	Slide 37: Example
	Slide 38: Nelson-Oppen Combination
	Slide 39: Nelson-Oppen Combination
	Slide 40: Nelson-Oppen Combination
	Slide 41: Satisfiability Modulo Theories
	Slide 42: Example
	Slide 43: Example

