
Formal Verification



How to check if a 
produced program 
meets the formal 
specification?

• Testing/Typing are not sufficient

• Easy to argue that a given input will produce a 
given output (though the halting problem is 
already undecidable).

• Easy to argue that a property always holds at a 
single program point

• Also easy to argue that all constructs in the 
language will preserve some property (like 
when we proved type soundness).

• Much harder to prove general properties of 
the behavior of a program on all inputs.



Undecidability of Program Verification 

• Recursively enumerable languages are equivalent to Turing machines (and 
almost all languages you program).

• Proof: Reduce from the halting problem of Turing machines.

Rice’s Theorem (1951): Every nontrivial semantic 
property of recursively enumerable languages is 
undecidable.
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Success Stories

Infrastructure:

Verifiers:

Success Stories: 

Verve OS

Move

Coq



Axiomatic Semantics
(AKA program logics)
• A system for proving properties about programs

• Key idea:

• We can define the semantics of a construct by describing its effect on assertions about the 
program state.

• Two components

• A language for stating assertions (“the assertion logic”)

• Can be First-Order Logic (FOL), a specialized logic such as separation logic, or Higher-Order Logic 
(HOL), which can encode the others.

• Many specialized languages developed over the years:

• Z, Larch, JML, Spec#

• Deductive rules (“the program logic”) for establishing the truth of such assertions



The Basics

o Hoare triple
- If the program state before execution satisfies A, and the execution of stmt terminates, 

the program state after execution satisfies B 

- This is a partial correctness assertion.

- We sometimes use the notation

         to denote a total correctness assertion

which means you also have to prove termination. 

[A] stmt [B]

Precondition Postcondition

{A} stmt {B}



What do assertions mean?

• The language of assertions:

• 𝐴 ≔ true ∣ false ∣ 𝑒1 = 𝑒2 ∣ 𝑒1 ≤ 𝑒2 ∣ 𝐴1 ∧ 𝐴2 ∣ ¬𝐴 ∣ ∀𝑥. 𝐴

• 𝑒 ≔ 0 ∣ 1 ∣ ⋯ ∣ 𝑥 ∣ 𝑦 ∣ ⋯ ∣ 𝑒1 + 𝑒2 ∣ 𝑒1 ⋅ 𝑒2 

• Notation 𝜎 ⊨ 𝐴 means that the assertion holds on state 𝜎 .

• 𝐴 is interpreted inductively over state 𝜎 as a FO structure.

• Ex.  𝜎 ⊨ 𝐴 ∧ 𝐵  iff.  𝜎 ⊨ 𝐴 and 𝜎 ⊨ 𝐵



Derivation Rules

o Derivation rules for each language construct

o Can be combined with the rule of consequence



Soundness and Completeness

• What does it mean for our derivation rules to be sound?

• What does it mean for them to be complete?

• So, are they complete?

• {true} x:=x {p}

• {true} c {false}

• Relative Completeness in the sense of Cook (1974)

• Expressible enough to express intermediate assertions, e.g., loop invariants



Example

• The following program purports to compute the 
square of a given integer n (not necessarily positive).

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• return i;



Example

• {true}

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• return i;

• {i = n*n}



Example

• {true}

• int i, j;

• {??}

• i := 1;

• {??}

• j := 1;

• {??}

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• {??}

• return i;

• {i = n*n}



Example

• {true}

• int i, j;

• {true}  //strongest postcondition

• i := 1;

• {i=1}  //strongest postcondition

• j := 1;

• {i=1 ∧ j=1}  //strongest postcondition

• {??}  //loop invariant

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• {i = n*n} //weakest precondition

• return i;

• {i = n*n}



Example

• {true}

• int i, j;

• {true}  //strongest postcondition

• i := 1;

• {i=1}  //strongest postcondition

• j := 1;

• {i=1 ∧ j=1}  //strongest postcondition

• {i = j*j}  //loop invariant

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• {i = n*n} //weakest postcondition

• return i;

• {i = n*n}



Example

• {true}

• int i, j;

• {true}  //strongest postcondition

• i := 1;

• {i=1}  //strongest postcondition

• j := 1;

• {i=1 ∧ j=1}  //strongest postcondition

• {i = j*j}  //loop invariant

• while (j != n) {

•     {i = j*j ∧ j != n}

•     i := i + 2*j + 1;

•     {i = (j+1)*(j+1) ∧ j != n}

•     j := j+1;

•     {i = j*j ∧ j-1 != n}

• }

• {i = n*n} //weakest postcondition

• return i;

• {i = n*n}



Total Correctness

o     Hoare triple

- If A holds before stmt, stmt terminates and B will hold afterward.

[A] stmt [B]



Total Correctness

• Definition: a well-ordered set is a set 𝑆 with a total order > such that every non-empty 
subset of 𝑆 has a least element.

• E.g., ℕ, >  is a w.o. set, ℤ, >  is not

• ℕ2, >  where 𝑎, 𝑏 > 𝑎′, 𝑏′  if 𝑎 > 𝑎′, or 𝑎 = 𝑎′ and 𝑏 > 𝑏′



Total Correctness

• Termination: 

• 1. find a ranking function 𝑟𝑎𝑛𝑘: 𝑃𝑟𝑜𝑔𝑆𝑡𝑎𝑡𝑒𝑠 → (ℕ, >) 

• 2. find a set of cutpoints (program points) to cut the program

• 3. prove for any cutpoint 𝑝𝑐, and any two program states 𝑆1, 𝑆2, if (𝑆1, 𝑝𝑐) reaches 
(𝑆2, 𝑝𝑐) in an execution sequence, then 𝑟𝑎𝑛𝑘 𝑆1 > 𝑟𝑎𝑛𝑘(𝑆2)

• Example: while (x>5) x:=x-1;



Total Correctness

• Example: 

• int i, j;

• i := 1;

• j := 1;

• while (j != n) {

•     i := i + 2*j + 1;

•     j := j+1;

• }

• return i;

Try Dafny!



Verification and synthesis put together

Specification

Synthesizer

ProgramProvably-Correct

candidate

counterexample

Verifier (not quite an oracle)

Oracle-Guided Synthesis (OGIS)

inductive invariants
ranking functions
     etc.

Formal



Impossible Trilemma

• From the perspective of synthesis:
A synthesizer usually needs to verify many candidate programs

The verifier should serve as an oracle

automation and efficiency are most important

The goal is to synthesize program that can be automatically verified

Automated reasoning is possible in some domains!

Expressive properties

AutomaticityGeneral-purpose programs



Logical Reasoning for Verification

x=1;
y=1;
while (*) {
    x=x+2;
    y=y+1;
}

Q: is x+y>=2 always true?

∀𝑥, 𝑦: 𝑥 = 1 ∧ 𝑦 = 1 → 𝑥 + 𝑦 ≥ 2
∀𝑥, 𝑦, 𝑥′𝑦′ 𝑥 + 𝑦 ≥ 2 ∧ 𝑥′ = 𝑥 + 2 ∧ 𝑦′ = 𝑦 + 2 → 𝑥′ + 𝑦′ ≥ 2

Q: Are these formulae valid in arithmetic?



Satisfiability Modulo Theories



First-Order Theories

• Q: Which statements are true in arithmetic/set-theory/groups/fields?

• A theory is a set of FOL sentences in a FO language
• Fix a language for arithmetic: (≤, +,⋅, 0,1) (why no −, <?)

• How to define a theory?
• Fix a standard model: ℕ (or ℤ?)

• Peano Arithmetic: 𝑃𝐴 = (ℕ, ≤, +,⋅, 0,1)

• Theory of PA: 𝑇ℎ(𝑃𝐴) = 𝜑 𝜑 is a sentence in ≤, +,⋅, 0,1  and ℕ ⊨ 𝜑}

• Another way to define a theory
• Fix a set of axioms Σ, then 𝑇ℎ Σ = 𝜑 Σ ⊢ 𝜑}



Common Theories

• Presburger Arithmetic: 𝑃𝑟𝐴 = ℕ, +, 0,1

• Integers: 𝐼𝑛𝑡 = (ℤ, +, −, <, … , −1,0,1, … )

• Reals: 𝑅𝑒𝑎𝑙 = (ℝ, +, −,⋅, 0,1)

• Rationals: 𝑅𝐴 = (ℚ, +, −,⋅, 0,1)

• Arrays: 𝐴𝑟𝑟 = AllArrays, 𝑟𝑒𝑎𝑑 ⋅,⋅ , 𝑤𝑟𝑖𝑡𝑒 ⋅,⋅,⋅

• Strings (many variants): 𝑆𝑡𝑟 = AllStrings,+, 𝑙𝑒𝑛, 𝑖𝑛𝑟𝑒 , 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐴𝑙𝑙, …



What Theories are Decidable?

• Decidable theories
• 𝑃𝑟𝐴 = ℕ, +, 0,1 : double exponential
• 𝐼𝑛𝑡 = (ℤ, +, −, <, … , −1,0,1, … ): triple exponential
• 𝑅𝑒𝑎𝑙 = (ℝ, +, −,⋅, 0,1): double exponential
• 𝑅𝐴 = (ℚ, +, −,⋅, 0,1): double exponential (P if quantifier-free)
• Quantifier-free 𝐴𝑟𝑟 = (AllArrays, 𝑟𝑒𝑎𝑑(⋅,⋅), 𝑤𝑟𝑖𝑡𝑒(⋅,⋅,⋅)): NP-complete
• Quantifier-free Equality (plain FOL): NP-complete
• Quantifier-free String Equations: PSPACE-complete

• Undecidable theories
• 𝑃𝐴 = (ℕ, ≤, +,⋅, 0,1) (Gödel’s Incompleteness Theorem, 1931)
• (ℤ, +,⋅, 1, −1,0)  (Tarski-Mostowski, 1949)

• 𝐴𝑟𝑟 = (AllArrays, 𝑟𝑒𝑎𝑑(⋅,⋅), 𝑤𝑟𝑖𝑡𝑒(⋅,⋅,⋅))
• Theory of Rings 𝑅𝐼 (Mal'cev, 1961)
• Set Theory 𝑍𝐹  (Tarski, 1949)
• Theory of String Equations (Quine, 1946)



Deciding Rational Arithmetic

• Definition: A set of formulae Σ admits quantifier elimination if 
for any formula ∃ ҧ𝑥𝜑 ҧ𝑥, ത𝑦 ∈ Σ, there is a quantifier free 𝜑′ ത𝑦 ∈
Σ such that ∃ ҧ𝑥𝜑 ҧ𝑥, ത𝑦 ≡ 𝜑′ ത𝑦 .

Theorem: 𝑅𝐴 admits quantifier elimination.



Rational Arithmetic QE

• Step 1: Normalization
• Convert 𝜑 to Negation Normal Form (NNF)

• Step 2: Remove Negation
• ¬ 𝑠 > 𝑡 ⇒ 𝑡 > 𝑠 ∨ 𝑡 = 𝑠

• ¬ 𝑠 = 𝑡 ⇒ 𝑠 > 𝑡 ∨ 𝑡 > 𝑠

• Step 3: Solve for 𝑥 in ∃𝑥𝜑

• 3𝑥 > 7𝑦 ⇒ 𝑥 >
7

3
𝑦

• Collect all terms 𝑡𝑖  compared to 𝑥, e.g., 𝑥 > 𝑡1, 𝑡2 > 𝑥, 𝑥 = 𝑡3, …

• Instantiate 𝑥 in ∃𝑥𝜑 with all possible 
𝑡𝑖+𝑡𝑗

2
, ∞ and −∞



Example

• ∃𝑥(2𝑥 = 𝑦)

• ∃𝑥(3𝑥 + 1 = 10 ∧ 7𝑥 − 6 > 7)



Solving QF Rational Arithmetic

• Solve satisfiability of ∃ ҧ𝑥𝜑( ҧ𝑥)
• Each conjunction is ٿ𝑗 𝑎1,𝑗𝑥1 + ⋯ + 𝑎𝑘,𝑗𝑥𝑘 > 𝑐𝑗

• Just linear programming!

• LP is solvable in (weakly) polynomial time

Theorem: Th(𝑅𝐴) is decidable in double exponential time.



Automated 
reasoning focuses 
on QF theories

• Many theories are only QF-decidable

• Quantified theories are usually too 
expensive, even if they are decidable

• QF theories are compositional (under 
some conditions)



How to combine decidable theories?

• How to combine decidable theories?

𝐿1 = (𝑅1, 𝐹1, 𝐶1)
𝑇ℎ1 is a decidable theory over 𝐿1

𝐷1 is a decision procedure for 𝑇ℎ1

𝐿2 = (𝑅2, 𝐹2, 𝐶2)
𝑇ℎ2 is a decidable theory over 𝐿2

𝐷2 is a decision procedure for 𝑇ℎ2

𝐿1 ∪ 𝐿2 = (𝑅1 ∪ 𝑅2, 𝐹1 ∪ 𝐹2, 𝐶1 ∪ 𝐶2)
𝑇ℎ1 ∪ 𝑇ℎ2 = 𝜑 𝑇ℎ1 ∪ 𝑇ℎ2 ⊢ 𝜑}

Can we build a decision procedure for 𝑇ℎ1 ∪ 𝑇ℎ2 from 𝐷1 and 𝐷2?



Example

𝑃𝑟𝐴 is decidable 𝐴𝑟𝑟 is QF-decidable

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑃𝑟𝐴 ∪ 𝐴𝑟𝑟 ?

The combined theory is undecidable in general!



Nelson-Oppen Combination

• Theorem (1979): If 
• 𝑇ℎ1 is a QF-decidable theory over 𝐿1

• 𝑇ℎ2 is a QF-decidable theory over 𝐿2

• 𝐿1 ∩ 𝐿2 = ∅

• Both 𝑇ℎ1 and 𝑇ℎ2 are stably infinite (intuitively, both theories have 
infinite models)

• then 𝑇ℎ1 ∪ 𝑇ℎ2 is QF-decidable!

• Combinable theories: 𝑃𝑟𝐴, 𝐼𝑛𝑡, 𝑅𝑒𝑎𝑙, 𝑅𝐴  + Equality + 𝐴𝑟𝑟



Nelson-Oppen Combination

• Step 1: Purification
• Split an 𝐿1 ∪ 𝐿2-formula 𝜑 into an 𝐿1-formula 𝜑1 and an 𝐿2-formula 𝜑2 

such that 𝜑 and 𝜑1 ∧ 𝜑2 are equisatisfiable

• Example: 𝑓 𝑥 + 𝑔 𝑦 < 𝑔 𝑎 + 𝑓 𝑏

𝑡1 = 𝑔 𝑦
𝑡3 = 𝑓 𝑡2

𝑡4 = 𝑔(𝑎)
𝑡5 = 𝑓(𝑏)

𝑡2 = 𝑥 + 𝑡1

𝑡5 < 𝑡4 + 𝑡5
∧



Nelson-Oppen Combination

• Step 2: Guess and Check

𝑡1 = 𝑔 𝑦
𝑡3 = 𝑓 𝑡2

𝑡4 = 𝑔(𝑎)
𝑡5 = 𝑓(𝑏)

𝑡2 = 𝑥 + 𝑡1

𝑡5 < 𝑡4 + 𝑡5
∧

𝑡1 𝑡2𝑡3

𝑡4

𝑡5

𝑀1 and 𝑀2 should agree on the equality 
between shared variables!

𝑀1

𝑀2

Guess an equality:

𝑡1 = 𝑡2

𝑡1 = 𝑡4

𝑡2 = 𝑡4

𝑡1 ≠ 𝑡5

𝑡2 ≠ 𝑡5

𝑡4 ≠ 𝑡5

Solve the two theories separately!
(if both theories are in NP, so is the combined procedure)



Satisfiability Modulo Theories

• Nelson-Oppen Method + DPLL Procedure (solving propositional 
constraints using backtracking)

• Standard Interchange Format

• Supports arithmetic, bit-vectors, uninterpreted functions, arrays, data 
types, …

• A plethora of well-engineered solvers (Z3, CVC4, etc.)

• Try Z3-play

https://jfmc.github.io/z3-play/


Example

• (declare-fun x () Int)

• (declare-const a (Array Int Int))

• (assert (> (select a (+ x x)) 2))

• (assert (= (select a 4) 1))

• (assert (> x 1))

• (assert (< x 3))

• (check-sat)

• (get-model)

• (exit)

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑃𝑟𝐴 ∪ 𝐴𝑟𝑟 ?

unsat

(error "line 8 column 10: model is not available")



Example

• (declare-fun x () Real)

• (declare-const a (Array Real Real))

• (assert (> (select a (+ x x)) 2))

• (assert (= (select a 4) 1))

• (assert (> x 1))

• (assert (< x 3))

• (check-sat)

• (get-model)

• (exit)

Is 𝑎 𝑥 + 𝑥 > 2 ∧ 𝑎 4 = 1 ∧ 𝑥 > 1 ∧ 𝑥 < 3 satisfiable in 𝑅𝑒𝑎𝑙 ∪ 𝐴𝑟𝑟 ?

sat

(model

  (define-fun a () (Array Real Real)

    (store ((as const (Array Real Real)) 1.0) 3.0 (/ 5.0 2.0)))

  (define-fun x () Real

    (/ 3.0 2.0))

)
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