Constraint-Based Synthesis

With slides by Armando Solar-Lezama

Synthesis as Constraint Solving

Synthesis Condition:

d¢ Vin € E Q(in, gb)

where E ={xy, X, .

Invention Pillar Question:
How does Sketch work?

(@

D)

Sketch
with
harnesses

:> Symb0||c
| Execution
J

:> Simplification §

—

Semantics of expressions

e=n|x|e +e,| e >e,
c:=x:=e|c;;c, | ifethenc,elsec, | whileedoc

What does an expression mean?

* An expression reads the state and produces a value
* The state is modeled as a map o from vars to values
e All-] : e » X > int

EX:
* Alx] = 1o.0(x)
e Aln] = Ao.n

 Alley + e, = Ao. Ale o + Ale,llo
* Alle; > e,]| = 1o.if Alle,]lo > Ale,]o then 1 else 0

Semantics of commands

e=n|x|e +e,| e >e,
c:=x:=e|c;;c, | ifethenc,elsec, | whileedoc

What does a command mean?
A command modifies the state
cCl]:c>X->2X
EX:
e Clx :=e] = Ao.o[x —» (Alelo)]
* Clicy; e, = Ao.Cllcy, 1(Cllicq 1o)
 C[lif e then ¢, else ¢,] =
Ao.if Alle]lo = 1 then (Clcq]o) else (Clc, [o)

What about loops?

e=n|x|e +e,| e >e,
c:=x:=e|c;;c, | ifethenc,elsec, | whileedoc

Semantics of a while loop

e Let W = C[while e do]
W satisfies the following equation:

W = Ao.if A[e] then (W(C[[c]]0)) else o

Equation can have many solutions

* when loop doesn’t terminate
Rich theory for finding least fixed point solution
We’ll settle for a simpler strategy:

unroll k times and then give up

Symbolic execution of sketches

Very similar to what we just saw
e But val rameterized b
ut values are now pa iz y @ /ESP:@—}rZ}

Alo|T: Aexp — (X — V)

The denotation function will keep
track of contexts

Alz]"o = o(x)
A[???TU —)\@QD(??? T)
A[éﬁ * GQHTO' —)\@ A[€1HTU(,Z5 * A[GQ]TU@

Symbolic execution of commands

Commands have two roles

* Modify the symbolic state
* Generate constraints

Clle]* : Command - (Z X P(D) - X X ?(CID))

Constraints represent sets of valid
¢ functions

Symbolic execution of commands

Assignments and Assertion

Clr :=¢€] (o, ®) = (clx — Ale|7o], P)

Classert €| (0, P) = (0, {pcP: Ale|"cp =1})

Symbolic execution of commands

If statement

C[if e then ¢ else o] (o, @) = (o', D)

Oy ={pecd: Ale] o9 = true}
Pr={ped: Ale|"c¢ = false}
(01, P1) = Cler] (o,)

(02, P2) = Cle2] (0. D)

' = (P1) U (P2)

o' = Av. . Ale]"op ? 01w oox)

Conditionals

4[Initial set of }
viable ¢

if e

then C1 else C2

Conditionals

Subset such that
Ale]l =0

Subset such that o
[Alel ¢ = 1 I ite '

then C1 else C2

Conditionals

if e

then C1 else C2

Subset that aIso
passes all the
assertions in C2

Conditionals

if e

then C1 else C2

Result of
“ <[conditional }

Symbolic execution of commands

While loops
W({o,®)) = Clwhile e do c]|" (o,) = (¢, D)
Oy ={ped: Ale|"o¢ = true}
Py ={0cP: Ale|"0¢ = false}
(01, P1) = W(C[c]" (o, Pt))
¢ = (1) U (Py)
o' = Xe\o. Ale]"o¢ ? o120 1 oxg

Building Constraints

A sketch as a constraint system

int lin(int x){ x > O(??) x+1 > ©(??,)
if(x > $(??,))

return ¢(??,)*x + ¢d(??3);

d(22,)*x + P(?2?,) O(22,)*¥(x+1) + P(??,)

else
return ¢(??,)*x;

¥

$(22,)*x G (22,)* (x+1)
void main(int x){
int t1 = lin(x);
int t2 = lin(x+1);
X>=4
if(x<4) assert tl >= x*x; X<3

if(x>=3) assert t2-tl == 1;

Symbolic Execution

int popSketched (bit[W] x)
implements pop {
repeat(??) {
X=(X&7??
+(X>?)&?);

}

return Xx;

-V VvV

Ex : Population count.

int pop (bit[W] x)
{
=> int count = O;
= for (int i = O:i <W; i++){
if (x[i]) count++;

)

return count;

}

X

count

0010 0110 - 3

count

count

count

count

[TTT]

Simplification

Structural Hashing

Structural Hashing + Rewriting

Structural Hashing + Rewriting

X+b<b-X<0

Structural Hashing + Rewriting

X+b<b-X<0

Structural Hashing + Rewriting

X+b<b-X<0

Structural Hashing + Rewriting

X+b<b-X<0

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Structural Hashing + Rewriting

X+b<bhb -oX<0 :

XANX—->X

Structural Hashing + Rewriting

X+b<bhb -oX<0 :

XANX—->X

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Structural Hashing + Rewriting

X+b<b-X<0

XANX—->X

Symmetries

Multiple ways of representing the same problem

Expr := var*const Expr := var*const
| Expr + Expr | var*const + Expr

w*cl+(x*c2+(y*c3+z*c4))

 Grammar on the right has fewer symmetries
 Grammar on the left can produce all possible ways to parenthesize

e Can completely eliminate symmetries from the right by enforcing a
variable ordering

* Can’t be done with a grammar, but it can with a generative model

Expr(vmin) :=let v=var() in v¥const (assertv >vmin)
| let v=var() in v*const + Expr(v) (assert v > vmin)

Symmetries

Do symmetries matter?
* |t depends

Some methods are very sensitive to symmetries
* E.g. symbolic search

Others are largely oblivious to them
* E.g. sampling

How to solve the constraints?

How to solve the constraints?

In general, a Quantified Boolean Formula (QBF) Satisfiability problem:

A¢ € {0,1}" Vin € {0,1}" Q(in, ¢)

e 2-QBF is X,-complete
* Reduce to a sequence of SAT problems using the CEGIS loop (coming soon)

The SAT problem: How to check if a quantifier-free Boolean formula « is a tautology (or
—« is satisfiable) ?

* Naive algorithm: enumerate all possible models (exponentially many)
e The first known NP-complete problem (Cook 1971)
* At least as hard as all NP problems

CNF-SAT Solving

Conjunctive Normal Form (CNF)
* NZ1(Vi=1lij)
* E.g, (pr V2V —p3) A(=py VD2 VDP3)
* Every V’}zl l; ; is called a clause/conjunct

Theorem: there is no polynomial blow-up translation from wff to CNF/DNF.

Theorem: SAT can be reduced to CNF-SAT in polynomial time.
e |dea: introduce a fresh variable for each subformula

Cook-Levin Theorem (1971): CNF-SAT is NP-complete.
* Proof: coming soon

Example

Operation to CNF

ho A h t . . :
oAl =1 e Sum (OR) of variables and their negation

t1 = hy
t; = hy * Equivalent to Ajex l; = ;

tiANhy, = ¢,
Ay = T
ty Nhy, = t,
tyANh, = t,

Resolution Algorithm

Dvp D'v-p
DvD'

Resolution:

Apply resolution:
 IfDVpandD'V —p are clauses, add D V D’ as a new clause
* Repeat until no more resolution can be done
* Resolution is closed if the empty clause is contained
e Return Unsatisfiable iff. Closed

Example

PVOA(=pVT)A(=qVT)A(=T)

{{p,q}, {-p, v} {—q 1} {=r}}

{p q}
{-p, 7}
{—q,7}
{=r}
{-p}
{q}

{r}

)

(1)
(2)
(3)
(4)
(5) (resolvent of 2 and 4)
(6) (resolvent of 1 and 5)
(7) (resolvent of 3 and 6)
(8) (resolvent of 4 and 7)

DPLL Algorithm

Backtracking based search
e Assign a value to a variable to simplify the CNF
e Stop if all variables are assigned
* Backtrack if unsatisfiable
* Variables are chosen heuristically

Most efficient SAT solving algorithm since 1960s
* Implementations: zChaff, Minisat, etc.

Example

DPLL in a nutshell

Constraint is a CNF Clause

@ X; VX, VX3V Xy V Xs V Xg
Constraint database —0—0—0—0—0
1V X : Xs V Xg V X4
e—0—0
X; X9
'X7 \Y) X6 \/ 'X5 ‘X5 \' 'X3 \Y) X9
—0 0 o—0—0O
X -
6 X3

'Xl V 'X5 V X9

'X6VX3VX4 O O Q

What about Arithmetic?

1) Bit-blast

2) Unary encoding

3) SMT

	Slide 1: Constraint-Based Synthesis
	Slide 2: Synthesis as Constraint Solving
	Slide 3: Invention Pillar Question: How does Sketch work?
	Slide 4: Semantics of expressions
	Slide 5: Semantics of commands
	Slide 6: What about loops?
	Slide 7: Symbolic execution of sketches
	Slide 8: Symbolic execution of commands
	Slide 9: Symbolic execution of commands
	Slide 10: Symbolic execution of commands
	Slide 11: Conditionals
	Slide 12: Conditionals
	Slide 13: Conditionals
	Slide 14: Conditionals
	Slide 15: Symbolic execution of commands
	Slide 16: Building Constraints
	Slide 17: A sketch as a constraint system
	Slide 18: Symbolic Execution
	Slide 19: Ex : Population count. 0010 0110  3
	Slide 20: Simplification
	Slide 21: Structural Hashing
	Slide 22: Structural Hashing + Rewriting
	Slide 23: Structural Hashing + Rewriting
	Slide 24: Structural Hashing + Rewriting
	Slide 25: Structural Hashing + Rewriting
	Slide 26: Structural Hashing + Rewriting
	Slide 27: Structural Hashing + Rewriting
	Slide 28: Structural Hashing + Rewriting
	Slide 29: Structural Hashing + Rewriting
	Slide 30: Structural Hashing + Rewriting
	Slide 31: Structural Hashing + Rewriting
	Slide 32: Structural Hashing + Rewriting
	Slide 33: Structural Hashing + Rewriting
	Slide 34: Structural Hashing + Rewriting
	Slide 35: Symmetries
	Slide 36: Symmetries
	Slide 37: How to solve the constraints?
	Slide 38: How to solve the constraints?
	Slide 39: CNF-SAT Solving
	Slide 40: Example
	Slide 41: Resolution Algorithm
	Slide 42: Example
	Slide 43: DPLL Algorithm
	Slide 44: Example
	Slide 45: What about Arithmetic?

