
Constraint-Based Synthesis
With slides by Armando Solar-Lezama

Synthesis as Constraint Solving

∃𝜙 ∀𝑖𝑛 ∈ 𝐸 𝑄(𝑖𝑛, 𝜙)
where E = {x1, x2, …, xk}

• Synthesis Condition:

Invention Pillar Question:
How does Sketch work?

Sketch
with

harnesses

Symbolic
Execution

Simplification Encoding Solver

Semantics of expressions

• What does an expression mean?
• An expression reads the state and produces a value

• The state is modeled as a map 𝜎 from vars to values

• 𝒜 ⋅ ∶ 𝑒 → Σ → 𝑖𝑛𝑡

• Ex:
• 𝒜 𝑥 = 𝜆𝜎. 𝜎(𝑥)

• 𝒜 𝑛 = 𝜆𝜎. 𝑛

• 𝒜 𝑒1 + 𝑒2 = 𝜆𝜎. 𝒜 𝑒1 𝜎 + 𝒜 𝑒2 𝜎

• 𝒜 𝑒1 > 𝑒2 = 𝜆𝜎. if 𝒜 𝑒1 𝜎 > 𝒜 𝑒2 𝜎 then 1 else 0

e:= n | x | e1 + e2 | e1 > e2

c:= x := e | c1 ; c2 | if e then c1 else c2 | while e do c

Semantics of commands

• What does a command mean?
• A command modifies the state

• 𝒞 ⋅ ∶ 𝑐 → Σ → Σ

• Ex:
• 𝒞 𝑥 ≔ 𝑒 = 𝜆𝜎. 𝜎[𝑥 → (𝒜 𝑒 𝜎)]

• 𝒞 𝑐1; 𝑐2 = 𝜆𝜎. 𝒞 𝑐2 (𝒞 𝑐1 𝜎)

• 𝒞 if 𝑒 then 𝑐1 else 𝑐2 =

 𝜆𝜎. if 𝒜 𝑒 𝜎 = 1 then 𝒞 𝑐1 𝜎 else 𝒞 𝑐2 𝜎

e:= n | x | e1 + e2 | e1 > e2

c:= x := e | c1 ; c2 | if e then c1 else c2 | while e do c

What about loops?

• Semantics of a while loop
• Let 𝑊 = 𝒞 while 𝑒 do 𝑐

• 𝑊 satisfies the following equation:
𝑊 = 𝜆𝜎. if 𝒜 𝑒 then 𝑊 𝒞 𝑐 𝜎 else 𝜎

• Equation can have many solutions
• when loop doesn’t terminate

• Rich theory for finding least fixed point solution

• We’ll settle for a simpler strategy:

 unroll k times and then give up

e:= n | x | e1 + e2 | e1 > e2

c:= x := e | c1 ; c2 | if e then c1 else c2 | while e do c

Symbolic execution of sketches

• Very similar to what we just saw
• But values are now parameterized by 𝜙

The denotation function will keep
track of contexts

Symbolic execution of commands

• Commands have two roles
• Modify the symbolic state

• Generate constraints

Constraints represent sets of valid
𝜙 functions

𝒞 ∘ 𝜏 ∶ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 → Σ × 𝒫 Φ → Σ × 𝒫 Φ

Symbolic execution of commands

• Assignments and Assertion

Symbolic execution of commands

• If statement

Conditionals
if e

then C1 else C2

Initial set of
viable 𝜙

Conditionals
if e

then C1 else C2

Subset such that
𝒜 𝑒 𝜙 = 0

Subset such that
𝒜 𝑒 𝜙 = 1

Conditionals
if e

then C1 else C2

Subset that also
passes all the

assertions in C2

Conditionals
if e

then C1 else C2

U

Result of
conditional

Symbolic execution of commands

• While loops

Building Constraints

A sketch as a constraint system

int lin(int x){
 if(x > φ(??1))
 return φ(??2)*x + φ(??3);
 else
 return φ(??4)*x;
}

void main(int x){
 int t1 = lin(x);
 int t2 = lin(x+1);

 if(x<4) assert t1 >= x*x;

 if(x>=3) assert t2-t1 == 1;
}

φ(??2)*x + φ(??3)

φ(??4)*x

x > φ(??1)

φ(??2)*(x+1) + φ(??3)

φ(??4)*(x+1)

x+1 > φ(??1)

x>=4

x<3

muxmux

x*x

-

=

1

or
>=

or

and

Symbolic Execution

int popSketched (bit[W] x)

 implements pop {

 repeat(??) {

 x = (x & ??)

 + ((x >> ??) & ??);

 }

 return x;

}

x

& >>

&

+

mux

x

& >>

&

+

mux

x

& >>

&
+

mux

xS(x,𝜙) =

Ex : Population count. 0010 0110 → 3

int pop (bit[W] x)

{

 int count = 0;

 for (int i = 0; i < W; i++) {

 if (x[i]) count++;

 }

 return count;

}

x count 0 0 0 0 one 0 0 0 1

+

mux

count

+

count

mux

+

count

+

count

mux

mux

F(x) =

Simplification

Structural Hashing

h0 h1

+

*

+

h2

*
a b

h0 h1

+

*

h2

*
a b

h0 h1

+

*

h2

a b

Structural Hashing + Rewriting

h0 ab

<

0

^

<

<

++

^

Structural Hashing + Rewriting

h0 ab

<

0

^

<

<

++

^

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0
h0 a

<

0

^

<

<

+

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0
h0 a

<

0

^

<

<

+

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0
h0 a

0

^

<
<

+

^

Structural Hashing + Rewriting

h0 a

0

^

<
<

+

^

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 a

0

<
<

+

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 a

0

<
<

+

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 0

<
<

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 0

<
<

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 0

<

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 0

<

^

Structural Hashing + Rewriting

𝑋 + 𝑏 < 𝑏 → 𝑋 < 0

𝑋 ∧ 𝑋 → 𝑋

h0 0

<

Symmetries

• Multiple ways of representing the same problem

• Grammar on the right has fewer symmetries

• Grammar on the left can produce all possible ways to parenthesize

• Can completely eliminate symmetries from the right by enforcing a
variable ordering
• Can’t be done with a grammar, but it can with a generative model

Expr := var*const
 | Expr + Expr

Expr := var*const
 | var*const + Expr

w*c1+(x*c2+(y*c3+z*c4))

Expr(vmin) := let v = var() in v*const (assert v > vmin)
 | let v=var() in v*const + Expr(v) (assert v > vmin)

Symmetries

• Do symmetries matter?
• It depends

• Some methods are very sensitive to symmetries
• E.g. symbolic search

• Others are largely oblivious to them
• E.g. sampling

How to solve the constraints?

How to solve the constraints?

• The SAT problem: How to check if a quantifier-free Boolean formula 𝛼 is a tautology (or
¬𝛼 is satisfiable) ?

• Naïve algorithm: enumerate all possible models (exponentially many)
• The first known NP-complete problem (Cook 1971)
• At least as hard as all NP problems

• In general, a Quantified Boolean Formula (QBF) Satisfiability problem:

• ∃𝜙 ∈ 0,1 𝑚 ∀𝑖𝑛 ∈ 0,1 𝑛 𝑄(𝑖𝑛, 𝜙)

• 2-QBF is Σ2-complete

• Reduce to a sequence of SAT problems using the CEGIS loop (coming soon)

CNF-SAT Solving

• Conjunctive Normal Form (CNF)

• 𝑖=1ٿ
𝑚 𝑗=1ڀ)

𝑛 𝑙𝑖,𝑗)

• E.g., 𝑝1 ∨ p2 ∨ ¬𝑝3 ∧ ¬𝑝1 ∨ p2 ∨ 𝑝3

• Every ڀ𝑗=1
𝑛 𝑙𝑖,𝑗 is called a clause/conjunct

• Theorem: there is no polynomial blow-up translation from wff to CNF/DNF.

• Theorem: SAT can be reduced to CNF-SAT in polynomial time.

• Idea: introduce a fresh variable for each subformula

• Cook-Levin Theorem (1971): CNF-SAT is NP-complete.

• Proof: coming soon

Example

• Operation to CNF
• Sum (OR) of variables and their negation

• Equivalent to ٿ𝑖∈𝑋 𝑙𝑖 ⇒ 𝑙𝑗

h0 h1

∧

xor

h2

Assert

𝑡1

𝑡2

ℎ0 ∧ ℎ1 ⇒ 𝑡1

𝑡1 ⇒ ℎ0

𝑡1 ⇒ ℎ1

𝑡1 ∧ ℎ2 ⇒ ഥ𝑡2
ഥ𝑡1 ∧ ℎ2 ⇒ ഥ𝑡2

𝑡1 ∧ ℎ2 ⇒ 𝑡2
ഥ𝑡1 ∧ ℎ2 ⇒ 𝑡2

Resolution Algorithm

• Resolution:
𝐷∨𝑝 𝐷′∨¬𝑝

𝐷∨𝐷′

• Apply resolution:

• If 𝐷 ∨ 𝑝 and 𝐷′ ∨ ¬𝑝 are clauses, add 𝐷 ∨ 𝐷′ as a new clause

• Repeat until no more resolution can be done

• Resolution is closed if the empty clause is contained

• Return Unsatisfiable iff. Closed

Example

• 𝑝 ∨ 𝑞 ∧ ¬𝑝 ∨ 𝑟 ∧ ¬𝑞 ∨ 𝑟 ∧ ¬𝑟

• { 𝑝, 𝑞 , ¬𝑝, 𝑟 , ¬𝑞, 𝑟 , {¬𝑟}}

• 𝑝, 𝑞 (1)

• ¬𝑝, 𝑟 (2)

• ¬𝑞, 𝑟 (3)

• {¬𝑟} (4)

• ¬𝑝 (5) (resolvent of 2 and 4)

• 𝑞 (6) (resolvent of 1 and 5)

• 𝑟 (7) (resolvent of 3 and 6)

• {} (8) (resolvent of 4 and 7)

DPLL Algorithm

• Backtracking based search

• Assign a value to a variable to simplify the CNF

• Stop if all variables are assigned

• Backtrack if unsatisfiable

• Variables are chosen heuristically

• Most efficient SAT solving algorithm since 1960s

• Implementations: zChaff, Minisat, etc.

Example

• DPLL in a nutshell

Constraint database

x1 v x2 v x3 v x4 v x5 v x6

Constraint is a CNF Clause

x1

-x9 x7

x5

x4

x6 -x3

-x1 v x7

-x7 v x6 v -x5 -x5 v -x3 v x9

-x6 v x3 v x4

-x5 v x9 v -x4

-x4

-x1 v -x5 v x9

What about Arithmetic?

• 1) Bit-blast

• 2) Unary encoding

• 3) SMT

	Slide 1: Constraint-Based Synthesis
	Slide 2: Synthesis as Constraint Solving
	Slide 3: Invention Pillar Question: How does Sketch work?
	Slide 4: Semantics of expressions
	Slide 5: Semantics of commands
	Slide 6: What about loops?
	Slide 7: Symbolic execution of sketches
	Slide 8: Symbolic execution of commands
	Slide 9: Symbolic execution of commands
	Slide 10: Symbolic execution of commands
	Slide 11: Conditionals
	Slide 12: Conditionals
	Slide 13: Conditionals
	Slide 14: Conditionals
	Slide 15: Symbolic execution of commands
	Slide 16: Building Constraints
	Slide 17: A sketch as a constraint system
	Slide 18: Symbolic Execution
	Slide 19: Ex : Population count. 0010 0110 3
	Slide 20: Simplification
	Slide 21: Structural Hashing
	Slide 22: Structural Hashing + Rewriting
	Slide 23: Structural Hashing + Rewriting
	Slide 24: Structural Hashing + Rewriting
	Slide 25: Structural Hashing + Rewriting
	Slide 26: Structural Hashing + Rewriting
	Slide 27: Structural Hashing + Rewriting
	Slide 28: Structural Hashing + Rewriting
	Slide 29: Structural Hashing + Rewriting
	Slide 30: Structural Hashing + Rewriting
	Slide 31: Structural Hashing + Rewriting
	Slide 32: Structural Hashing + Rewriting
	Slide 33: Structural Hashing + Rewriting
	Slide 34: Structural Hashing + Rewriting
	Slide 35: Symmetries
	Slide 36: Symmetries
	Slide 37: How to solve the constraints?
	Slide 38: How to solve the constraints?
	Slide 39: CNF-SAT Solving
	Slide 40: Example
	Slide 41: Resolution Algorithm
	Slide 42: Example
	Slide 43: DPLL Algorithm
	Slide 44: Example
	Slide 45: What about Arithmetic?

