Constraint-Based Synthesis

With slides by Armando Solar-Lezama

Synthesis as Constraint Solving

Synthesis Condition:

$$\exists \phi \forall in \in E Q(in, \phi)$$
where $E = \{x_1, x_2, ..., x_k\}$

Invention Pillar Question: How does Sketch work?

Semantics of expressions

e:= n | x | $e_1 + e_2$ | $e_1 > e_2$ c:= x := e | c_1 ; c_2 | if e then c_1 else c_2 | while e do c

What does an expression mean?

- An expression reads the state and produces a value
- The state is modeled as a map σ from vars to values
- $\mathcal{A}\llbracket \cdot \rrbracket : e \to \Sigma \to int$

Ex:

- $\mathcal{A}[\![x]\!] = \lambda \sigma. \sigma(x)$
- $\mathcal{A}\llbracket n \rrbracket = \lambda \sigma. n$
- $\mathcal{A}\llbracket e_1 + e_2 \rrbracket = \lambda \sigma . \mathcal{A}\llbracket e_1 \rrbracket \sigma + \mathcal{A}\llbracket e_2 \rrbracket \sigma$
- $\mathcal{A}\llbracket e_1 > e_2 \rrbracket = \lambda \sigma$. if $\mathcal{A}\llbracket e_1 \rrbracket \sigma > \mathcal{A}\llbracket e_2 \rrbracket \sigma$ then 1 else 0

Semantics of commands

e:= n | x | $e_1 + e_2$ | $e_1 > e_2$ c:= x := e | c_1 ; c_2 | if e then c_1 else c_2 | while e do c

What does a command mean?

- A command modifies the state
- $\mathcal{C}\llbracket \cdot \rrbracket : c \to \Sigma \to \Sigma$

Ex:

- $\mathcal{C}[x \coloneqq e] = \lambda \sigma. \sigma[x \to (\mathcal{A}[e]\sigma)]$
- $\mathcal{C}\llbracket c_1; c_2 \rrbracket = \lambda \sigma. \mathcal{C}\llbracket c_2 \rrbracket (\mathcal{C}\llbracket c_1 \rrbracket \sigma)$
- $C[[if e \text{ then } c_1 \text{ else } c_2]] = \lambda \sigma. \text{ if } \mathcal{A}[[e]]\sigma = 1 \text{ then } (C[[c_1]]\sigma) \text{ else } (C[[c_2]]\sigma)$

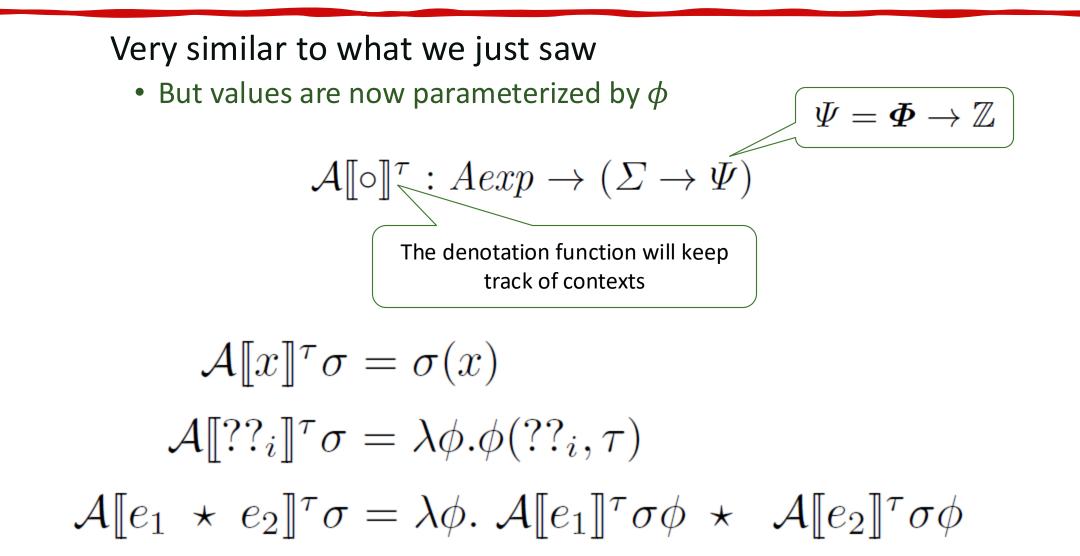
What about loops?

e:= n | x | $e_1 + e_2$ | $e_1 > e_2$ c:= x := e | c_1 ; c_2 | if e then c_1 else c_2 | while e do c

Semantics of a while loop

- Let W = C [[while e do c]]
- *W* satisfies the following equation: $W = \lambda \sigma$. if $\mathcal{A}[\![e]\!]$ then $(W(\mathcal{C}[\![c]\!]\sigma))$ else σ
- Equation can have many solutions
 - when loop doesn't terminate
- Rich theory for finding least fixed point solution
- We'll settle for a simpler strategy: unroll k times and then give up

Symbolic execution of sketches



Commands have two roles

- Modify the symbolic state
- Generate constraints

$$\mathcal{C}\llbracket \circ \rrbracket^{\tau}: Command \to \left(\Sigma \times \mathcal{P}(\Phi) \to \Sigma \times \mathcal{P}(\Phi)\right)$$

Constraints represent sets of valid
 ϕ functions

Assignments and Assertion

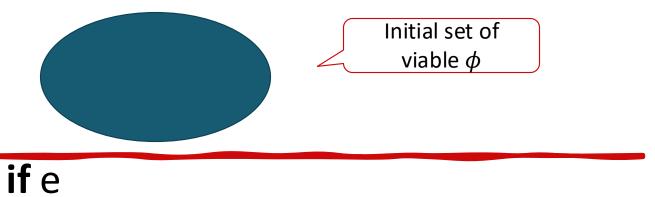
$$\mathcal{C}\llbracket x := e \rrbracket^{\tau} \langle \sigma, \Phi \rangle = \langle \sigma[x \mapsto \mathcal{A}\llbracket e \rrbracket^{\tau} \sigma], \Phi \rangle$$

 $\mathcal{C}[\![\text{assert } e]\!]^{\tau} \langle \sigma, \Phi \rangle = \langle \sigma, \{ \phi \in \Phi : \mathcal{A}[\![e]\!]^{\tau} \sigma \phi = 1 \} \rangle$

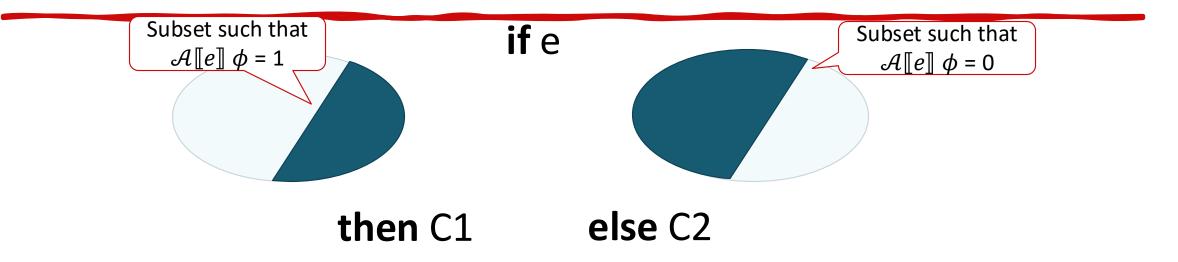
If statement

$$\mathcal{C}\llbracket$$
 if e then c_1 else $c_2 \rrbracket^{\tau} \langle \sigma, \Phi \rangle = \langle \sigma', \Phi' \rangle$

$$\Phi_{t} = \{ \phi \in \Phi : \mathcal{A}\llbracket e \rrbracket^{\tau} \sigma \phi = true \}$$
$$\Phi_{f} = \{ \phi \in \Phi : \mathcal{A}\llbracket e \rrbracket^{\tau} \sigma \phi = false \}$$
$$\langle \sigma_{1}, \Phi_{1} \rangle = \mathcal{C}\llbracket c_{1} \rrbracket^{\tau} \langle \sigma, \Phi_{t} \rangle$$
$$\langle \sigma_{2}, \Phi_{2} \rangle = \mathcal{C}\llbracket c_{2} \rrbracket^{\tau} \langle \sigma, \Phi_{f} \rangle$$
$$\Phi' = (\Phi_{1}) \cup (\Phi_{2})$$
$$\sigma' = \lambda x. \lambda \phi. \mathcal{A}\llbracket e \rrbracket^{\tau} \sigma \phi ? \sigma_{1} x \phi : \sigma_{2} x \phi$$

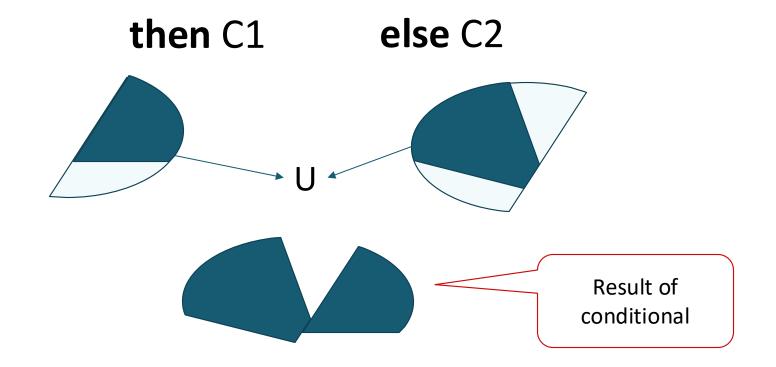


then C1 else C2



if e then C1 else C2 Subset that also passes all the assertions in C2

if e

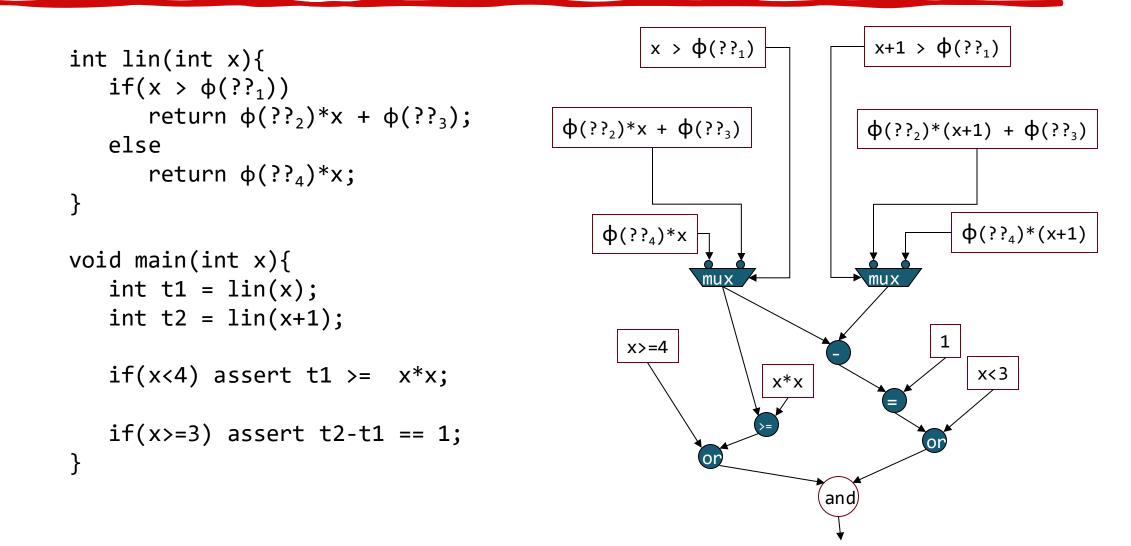


While loops

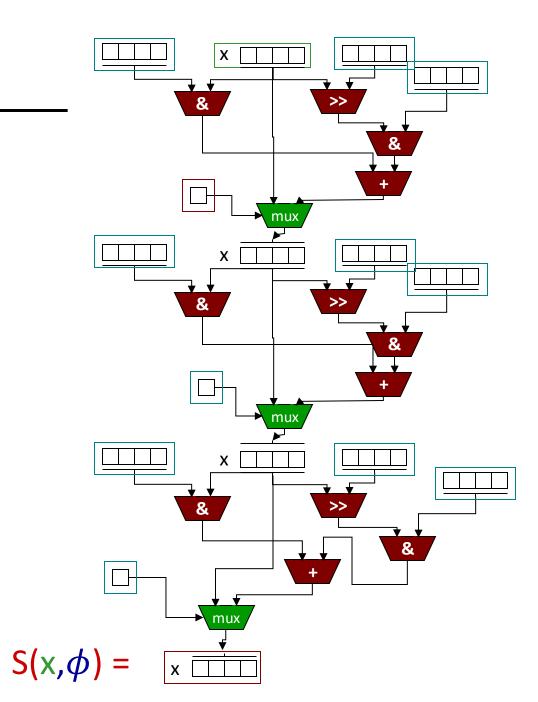
 $W(\langle \sigma, \Phi \rangle) = \mathcal{C}[\![while \ e \ do \ c]\!]^{\tau} \langle \sigma, \Phi \rangle = \langle \sigma', \Phi' \rangle$ $\Phi_t = \{ \phi \in \Phi : \mathcal{A}[\![e]\!]^\tau \sigma \phi = true \}$ $\Phi_f = \{ \phi \in \Phi : \mathcal{A}\llbracket e \rrbracket^\tau \sigma \phi = false \}$ $\langle \sigma_1, \Phi_1 \rangle = W(\mathcal{C}[c]^{\tau} \langle \sigma, \Phi_t \rangle)$ $\Phi' = (\Phi_1) \cup (\Phi_f)$ $\sigma' = \lambda x . \lambda \phi. \ \mathcal{A}[\![e]\!]^{\tau} \sigma \phi ? \sigma_1 x \phi : \sigma x \phi$

Building Constraints

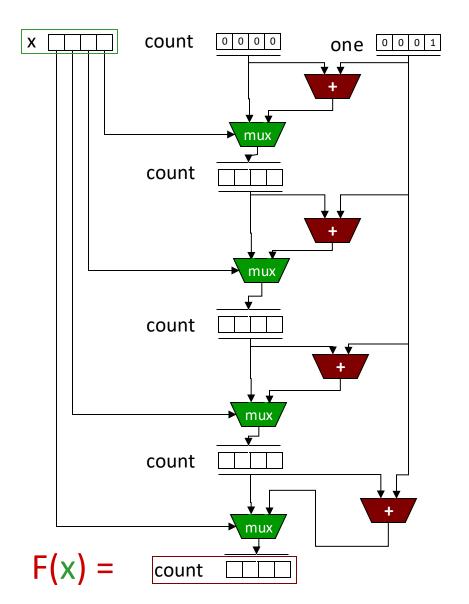
A sketch as a constraint system



Symbolic Execution

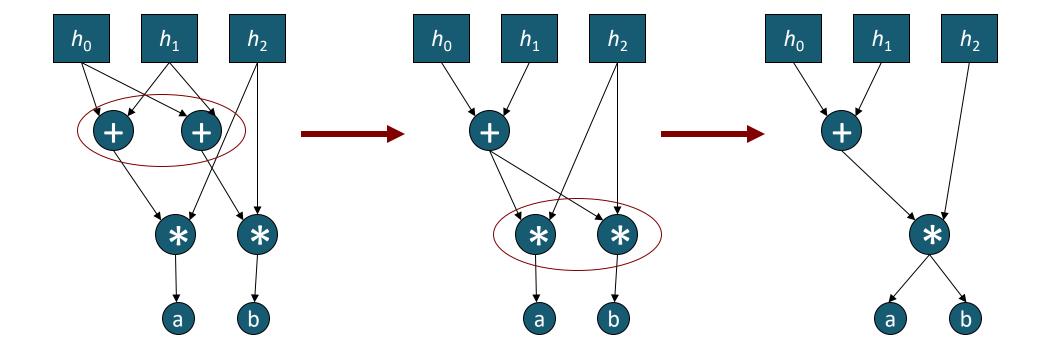


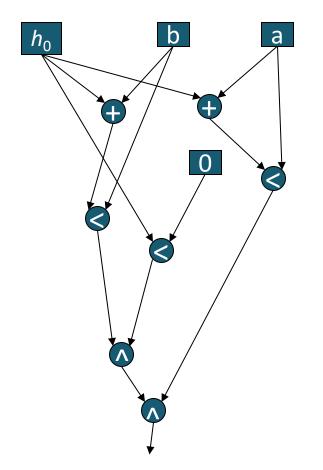
Ex : Population count. 0010 0110 \rightarrow 3



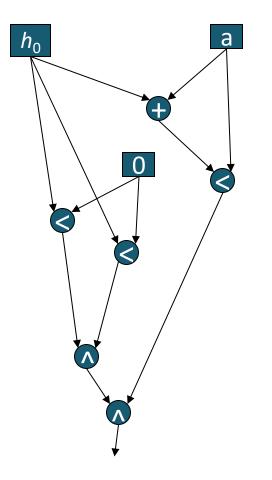
Simplification

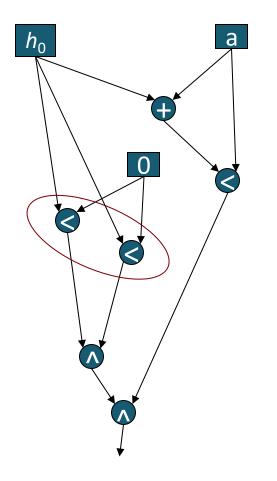
Structural Hashing

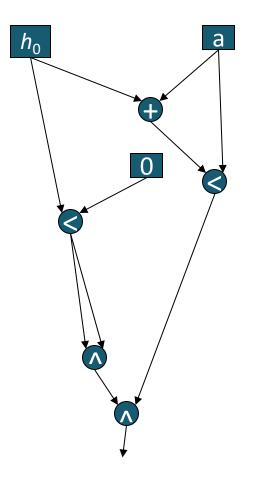




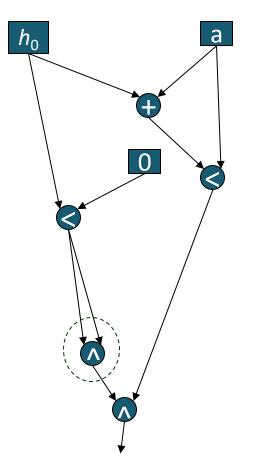
а b h_0 ╋ 0



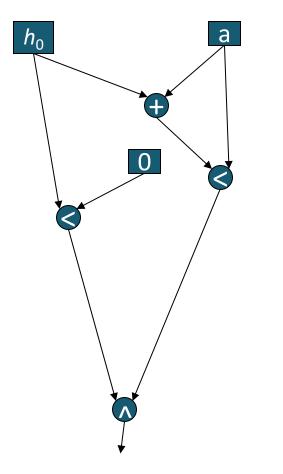




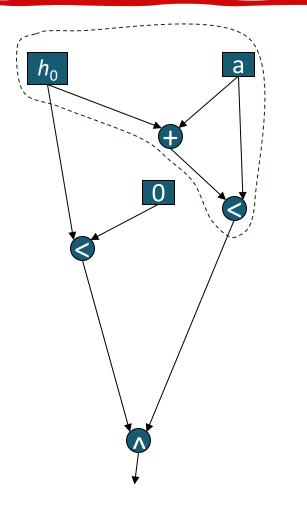
 $X + b < b \rightarrow X < 0$



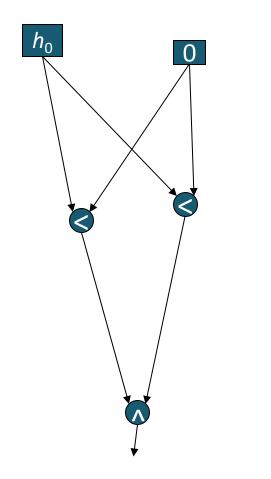
 $X + b < b \rightarrow X < 0$



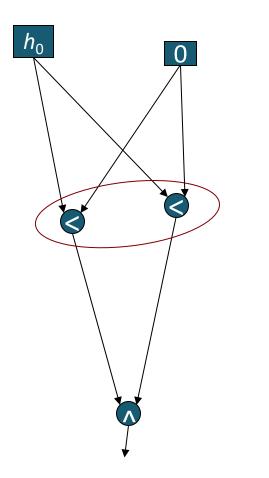
 $X + b < b \rightarrow X < 0$



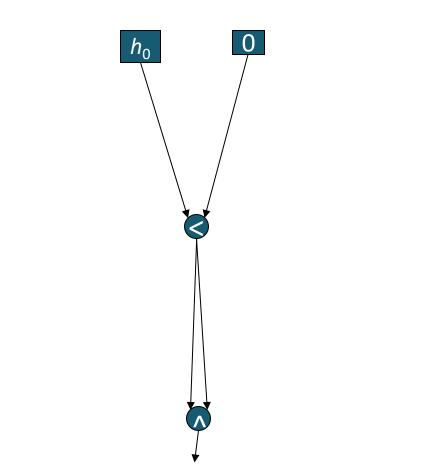
 $X + b < b \rightarrow X < 0$



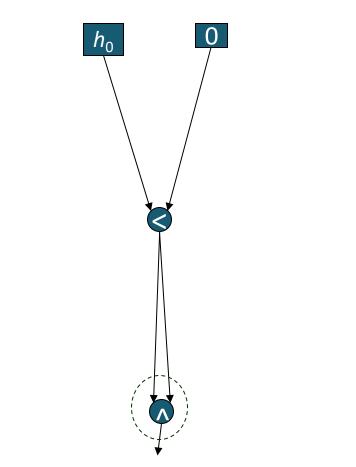
 $X + b < b \rightarrow X < 0$



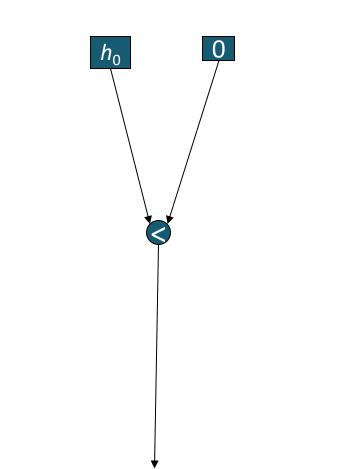
 $X + b < b \rightarrow X < 0$



 $X + b < b \rightarrow X < 0$



 $X + b < b \rightarrow X < 0$



Symmetries

Multiple ways of representing the same problem

Expr := var*const | Expr + Expr Expr := var*const | var*const + Expr

```
w*c1+(x*c2+(y*c3+z*c4))
```

- Grammar on the right has fewer symmetries
- Grammar on the left can produce all possible ways to parenthesize
- Can completely eliminate symmetries from the right by enforcing a variable ordering
 - Can't be done with a grammar, but it can with a generative model

```
Expr(vmin) := let v = var() in v*const (assert v > vmin)
| let v=var() in v*const + Expr(v) (assert v > vmin)
```

Symmetries

Do symmetries matter?

• It depends

Some methods are very sensitive to symmetries

• E.g. symbolic search

Others are largely oblivious to them

• E.g. sampling

How to solve the constraints?

How to solve the constraints?

In general, a Quantified Boolean Formula (QBF) Satisfiability problem: $\exists \phi \in \{0,1\}^m \ \forall in \in \{0,1\}^n \ Q(in,\phi)$

- 2-QBF is Σ_2 -complete
- Reduce to a sequence of SAT problems using the CEGIS loop (coming soon)

The SAT problem: How to check if a quantifier-free Boolean formula α is a tautology (or $\neg \alpha$ is satisfiable) ?

- Naïve algorithm: enumerate all possible models (exponentially many)
- The first known NP-complete problem (Cook 1971)
- At least as hard as *all* NP problems

CNF-SAT Solving

Conjunctive Normal Form (CNF)

- $\bigwedge_{i=1}^{m}(\bigvee_{j=1}^{n}l_{i,j})$
- E.g., $(p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor p_3)$
- Every $\bigvee_{j=1}^{n} l_{i,j}$ is called a clause/conjunct

Theorem: there is no polynomial blow-up translation from wff to CNF/DNF.

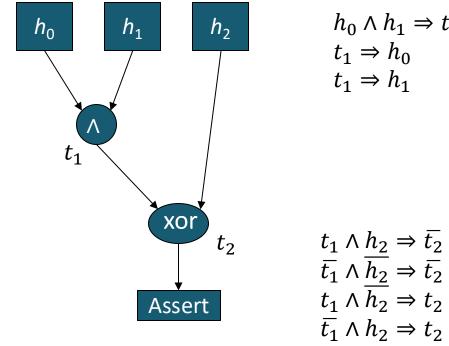
Theorem: SAT can be reduced to CNF-SAT in polynomial time.

• Idea: introduce a fresh variable for each subformula

Cook-Levin Theorem (1971): CNF-SAT is NP-complete.

• Proof: coming soon

Example



$$h_0 \wedge h_1 \Rightarrow t_1$$

 $h_1 \Rightarrow h_0$

Operation to CNF

• Sum (OR) of variables and their negation

• Equivalent to
$$\bigwedge_{i \in X} l_i \Rightarrow l_j$$

Resolution Algorithm

Resolution:
$$\frac{D \lor p \quad D' \lor \neg p}{D \lor D'}$$

Apply resolution:

- If $D \lor p$ and $D' \lor \neg p$ are clauses, add $D \lor D'$ as a new clause
- Repeat until no more resolution can be done
- Resolution is *closed* if the empty clause is contained

• Return Unsatisfiable iff. Closed

Example

$(p \lor q) \land (\neg p \lor r) \land (\neg q \lor r) \land (\neg r)$

$\{\{p,q\},\{\neg p,r\},\{\neg q,r\},\{\neg r\}\}$

$\{p,q\}$	(1)
$\{\neg p, r\}$	(2)
$\{\neg q, r\}$	(3)
$\{\neg r\}$	(4)
$\{\neg p\}$	(5) (resolvent of 2 and 4)
$\{q\}$	(6) (resolvent of 1 and 5)
$\{r\}$	(7) (resolvent of 3 and 6)
{}	(8) (resolvent of 4 and 7)

DPLL Algorithm

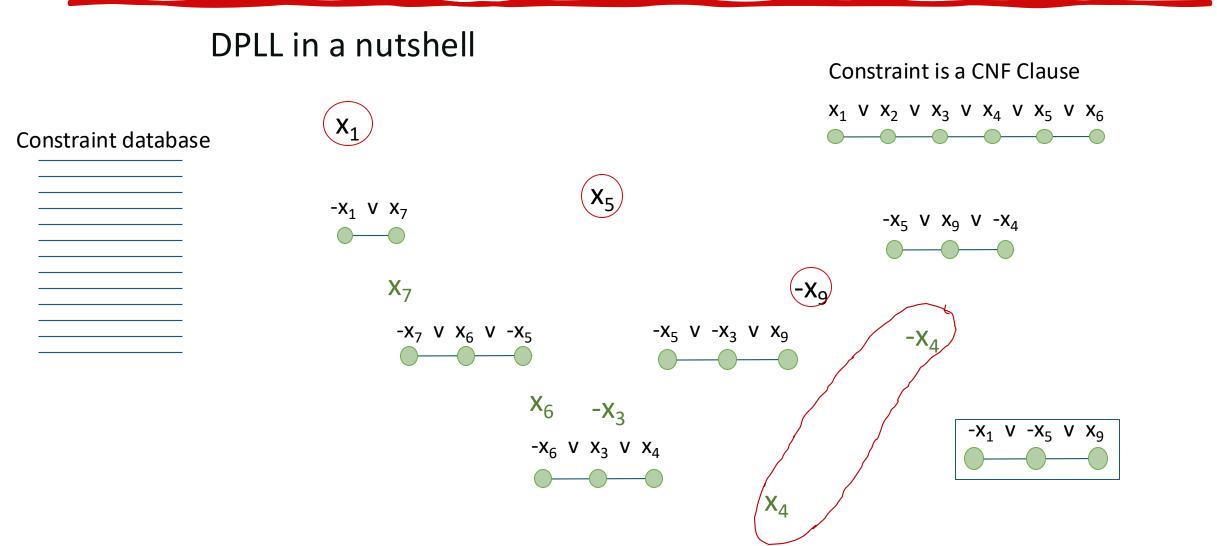
Backtracking based search

- Assign a value to a variable to simplify the CNF
- Stop if all variables are assigned
- Backtrack if unsatisfiable
- Variables are chosen heuristically

Most efficient SAT solving algorithm since 1960s

• Implementations: zChaff, Minisat, etc.

Example



What about Arithmetic?

1) Bit-blast

2) Unary encoding

3) SMT