Reactive Programs

Example 1: vending machine

Takes 3 coins to get a coke

If you put 3 coins, you can select a drink (as long as you don't cancel in the middle)

After you select your drink you get your drink

If you press cancel, you get your money back

Example 2: ignition button

Engine starts and stops with button push

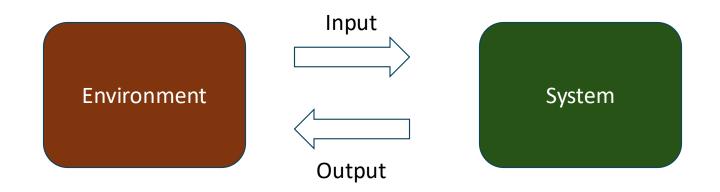
If engine is off, it stays off until I push

If I never push it stays off forever

If engine is on, it stays on until I push

• If I never push it stays on forever

What is a reactive program?



Reactive systems as algorithms

How do we describe reactive systems?

Finite state model

How do we specify their behavior?

 Monadic Second Order (MSO) logic, Linear Temporal Logic (LTL)

How to verify?

Satisfiability of MSO => Emptiness of Automata

How to design?

- Reactive system as a game
- Program implemented as a strategies (Realizability vs. Synthesis)

Finite state models

A reactive system can be naturally described as a *finite state transducer*

- There are finitely many controls/states
- Input is from a finite set I
- Action is from a finite set A
- "coin-coin-coin-drink-coin-coin-cancel-return2coins-..."

The behaviors are commonly defined as a *finite state automaton*

- Pair interleaved input-action
- Alphabet: $(I \cup \{\epsilon\}) \times (A \cup \{\epsilon\})$
- "(coin, ϵ)-(coin, ϵ)-(coin, drink)-(coin, ϵ)-(coin, ϵ)-

DFA

A deterministic finite automaton is $A = (\Sigma, Q, q_0, \delta, F)$ where

- Σ is the alphabet
- *Q* is a finite set of states
- $q_0 \in Q$ is the initial state
- $\delta: Q \times \Sigma \to Q$ is a deterministic transition table
- $F \subseteq Q$ is a set of accepting states

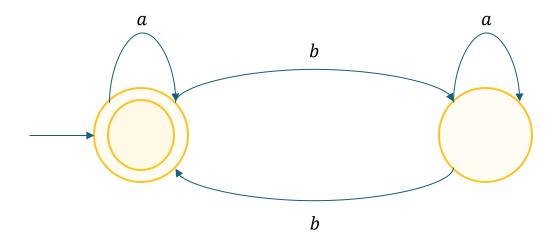
A word is accepted by A if running A over the word stops at an accepting state

L(A): the language of A (the set of words accepted by A)

Example

$$\Sigma = \{a, b\}$$

Design a DFA A such that L(A) is the set of all words containing even number of b's:



NFA

A nondeterministic finite automaton is $A = (\Sigma, Q, q_0, \delta, F)$ where

- Σ is the alphabet
- *Q* is a set of states
- $q_0 \in Q$ is the initial state
- $\delta \subseteq Q \times \Sigma \cup \{\epsilon\} \times Q$ is a nondeterministic transition table
- $F \subseteq Q$ is a set of accepting states

A word is accepted by A if a lucky run over the word stops at an accepting state

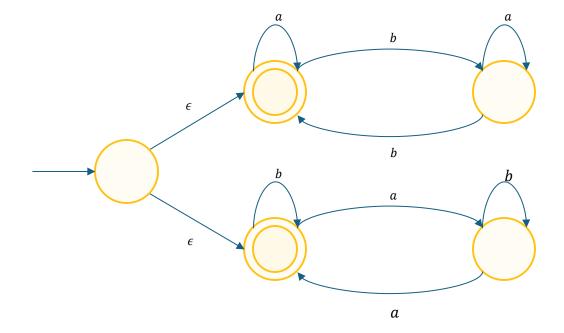
Theorems:

- NFA = DFA = Regular expressions
- NFA/DFA is closed under complementation, union, intersection
- Emptiness is decidable

Example

$$\Sigma = \{a, b\}$$

Design a DFA A such that L(A) is the set of all words containing even number of a's or even number of b's:



Regular expression

R is a regular expression if R is

- a for some a in the alphabet Σ
- *∈*
- Ø
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions
- $(R_1 \circ R_2)$ where R_1 and R_2 are regular expressions
- (R_1^*) where R_1 is a regular expression

Theorems:

- Regular expressions => NFA
- DFA => Regular expressions

Monadic Second Order Logic

Second-Order Logic

Second-Order (SO) logic extends FOL with second-order variables

- E.g., \mathbb{R}^1 (a set variable), \mathbb{R}^2 (a relation variable), \mathbb{F}^1 (a unary-function variable), \mathbb{F}^2 (a binary-function variable) ...
- $\exists F^2 \forall x, y (F^2(x, y) = F^2(y, x) \land \dots)$
- Sound and complete proof system does not exist

Monadic Second-Order (MSO) logic allows set variables only

• E.g., $\exists S (... \exists x (x \in S \land ...))$

Example

the length of the word is even?

$$\exists R \exists G \begin{pmatrix} \forall x (\neg R(x) \lor \neg G(x)) \\ \land R(0) \\ \land \forall x \forall y (S(x,y) \land R(x) \to G(y)) \\ \land \forall x \forall y (S(x,y) \land G(x) \to R(y)) \\ \land \forall y (last(y) \to G(y)) \end{pmatrix}$$

Logic vs. Automata

Theorem (Buchi-Elgot-Trakhtenbrot 1960): A language $L \in \Sigma^+$ is regular iff. L is MSO-definable.

- =>: Given a NFA A, Construct an MSO sentence over finite words that precisely describes L(A)
- <=: Given an MSO sentence φ , construct a NFA that accepts precisely the language defined by φ

Corollary: The satisfiability of MSO over finite words is decidable.

NFA to MSO

 $A = (\Sigma, Q, q_0, \delta, F), Q = \{q_0, \dots, q_k\},$ the accepting sequence is in Q^+ .

$$\varphi_{A} = \exists X_{0}X_{1}, \dots X_{k}:$$

$$\wedge \wedge_{i \neq j} \forall y \neg (X_{i}(y) \wedge X_{j}(y))$$

$$\wedge X_{0}(0)$$

$$\wedge \forall y, z \left(s(y, z) \Rightarrow \bigvee_{(i, a, j) \in \delta} \left(X_{i}(y) \wedge Q_{a}(y) \wedge X_{j}(z) \right) \right)$$

$$\wedge \forall y \left(last(y) \Rightarrow \bigvee_{i \in F} X_{i}(y) \right)$$

MSO to NFA

$$x \in X \mid x = y \mid s(x, y) \mid Q_a(x) \mid \exists x \varphi(x) \mid \exists X \varphi(X) \mid \varphi \lor \varphi \mid \neg \varphi$$

Remove first-order variables:

$$Sing(X) | X \subseteq Y | Suc(X,Y) | X \subseteq Q_a | \exists X \varphi(X) | \varphi \lor \varphi | \neg \varphi$$

Inductively convert:

- $\varphi \rightarrow A(\varphi)$ (DFA over Σ)
- $\varphi(X_1, ... X_n) \rightarrow A(\varphi)$ (DFA over $\Sigma \times \{0,1\}^n$)

Büchi Automata

Infinite words

- DFA/NFA accept words of finite length.
- How about infinite words?
 - E.g., "ababababab..."
- An *infinite word* is a map $\alpha: \mathbb{N} \to \Sigma$.
- E.g., $\alpha(i) = \begin{cases} a & \text{if } i \text{ is even} \\ b & \text{otherwise} \end{cases}$
- The set of all infinite words is denoted as Σ^{ω} .

Büchi automata

How can an automaton accept an infinite word?

- Büchi automata (named after Purdue's Julius Richard Büchi)
- "an accepting state is hit infinitely many times"

Büchi automata

A Büchi Automaton (BA) is $A = (\Sigma, Q, q_0, \delta, F)$ where

- Σ is the alphabet
- *Q* is a finite set of states
- $q_0 \in Q$ is the initial state
- $\delta \subseteq Q \times \Sigma \times Q$ is a nondeterministic transition table
- $F \subseteq Q$ is a set of accepting states

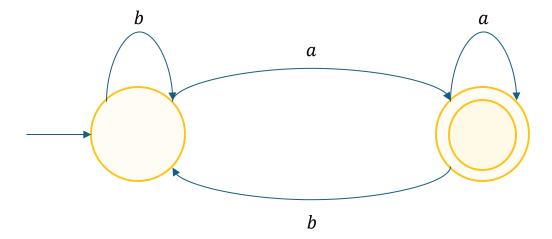
A run of A on an infinite word α is a map $r: \mathbb{N} \to Q$ such that $r(0) = q_0$, and for any $i \in \mathbb{N}$, $\left(r(i), \alpha(i), r(i+1)\right) \in \delta$

r is accepting if $r(i) \in F$ for infinitely many $i \in \mathbb{N}$

A word α is accepted by A if there is some accepting run of A on α

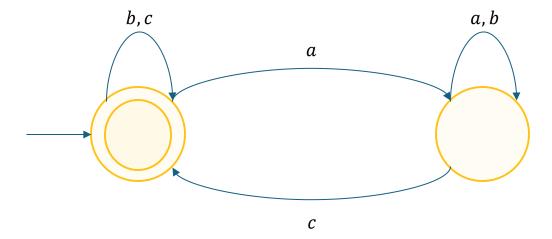
Example

 $L = \{\alpha \in \{a, b\}^{\omega} \mid \alpha \text{ has infinitely many } a's \}$



Example

"Every 'a' must be followed eventually by a 'c'."



Properties of BA

- BA is closed under
 - Union
 - Intersection
 - Complementation $(2^{n \cdot \lg n} \text{ blow-up})$
 - Projection
- BA is not determinizable!
 - E.g., infinite words over $\{0,1\}^{\omega}$ that contain finitely many 1's

Emptiness of BA is decidable (NLOGSPACE-complete)



Decision Procedure for MSO

- Implementation:
 - Mona (<u>https://www.brics.dk/mona/</u>)

- How is the complexity?
- Not elementary: $2^{2^{\cdot \cdot \cdot n}}$

Linear Temporal Logic

Logic vs. Automata, round 2

Theorem (Büchi 1960): A language $L \in \Sigma^{\omega}$ is regular iff. L is MSO-definable.

Corollary: The satisfiability of MSO over infinite words is decidable.

"Algorithm not very efficient"

Implementation:

Mona (https://www.brics.dk/mona/)

How is the complexity?

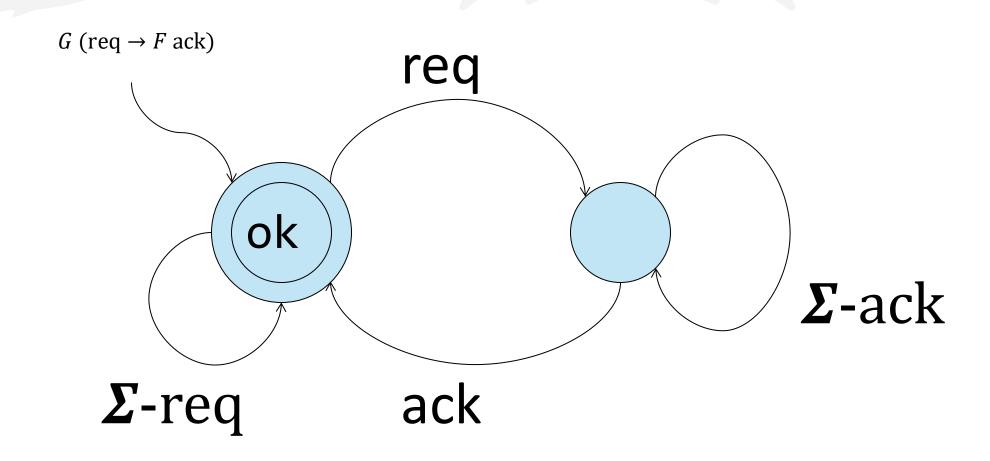
• Not elementary: $2^{2^{\cdot n}}$

Linear Temporal Logic (Pnuerli 1977)

```
Syntax: LTL :: - true \mid p \mid X\alpha \mid F\alpha \mid G\alpha \mid \alpha U\beta \mid \alpha \vee \beta \mid \neg \alpha "next" "eventually" "always" "until"
```

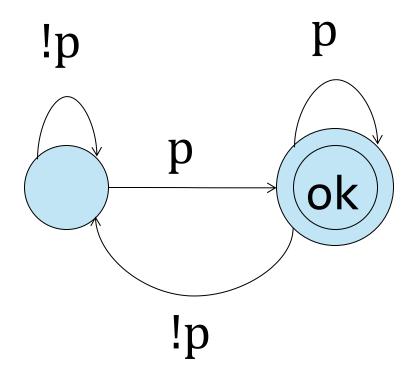
Semantics: interpreted over infinite traces

Example



Example

GFp



LTL to FO

For infinite words (or $(\mathbb{N}, <)$):

LTL = FO = star-free regular language < MSO = BA
 = Regular language

φ_{LTL} to $\varphi_{FO}(x)$ by structural induction:

- $p \Rightarrow \bigvee_{p \in Y} Q_Y(x)$
- $X \varphi \Rightarrow \exists y (s(x,y) \land \varphi_{FO}(y))$
- $F \varphi \Rightarrow \exists y (x \leq y \land \varphi_{FO}(y))$
- $\varphi U \psi \Rightarrow \exists y (x \le y \land \psi_{FO}(y) \land \forall z (x \le z < y \rightarrow \varphi_{FO}(z)))$
- $\varphi_1 \lor \varphi_2 \Rightarrow \varphi_{1_{FO}}(x) \lor \varphi_{2_{FO}}(x)$
- $\neg \varphi \Rightarrow \neg \varphi_{FO}(x)$

LTL to BA

Why LTL?

More efficient algorithm!

A maximal-model-based algorithm (Wolper-Vardi-Sistla 1983)

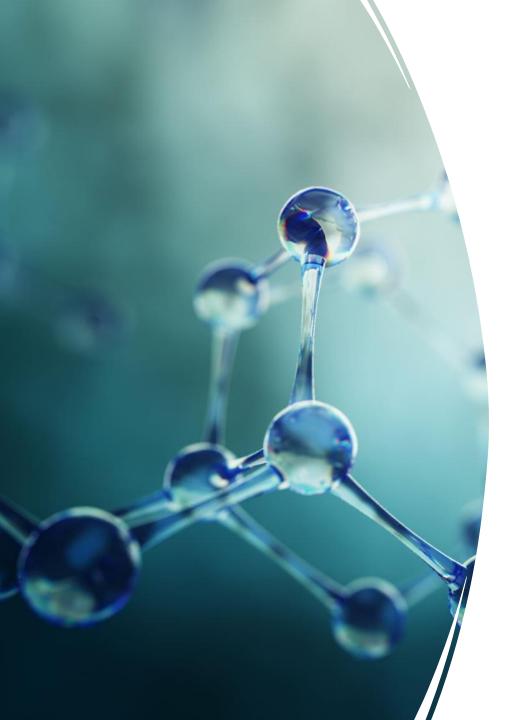
- Intuition: compute the maximal set of satisfied subformulae
- E.g., $\varphi : p \ U \ (\neg p \land q)$
- With input: p, pq, p, q, p, \emptyset , q, ...

Closures

How to define the subformulae?

Let φ be LTL, then $CL(\varphi)$ is the smallest set satisfying:

- $\varphi \in CL(\varphi)$
- If $\neg \psi \in CL(\varphi)$, then $\psi \in CL(\varphi)$
- If $\varphi_1 \vee \varphi_2 \in CL(\varphi)$, then $\varphi_1, \varphi_2 \in CL(\varphi)$
- If $X \psi \in CL(\varphi)$, then $\psi \in CL(\varphi)$
- If $\varphi_1 U \varphi_2 \in CL(\varphi)$, then $\varphi_1, \varphi_2, X \varphi_1 U \varphi_2 \in CL(\varphi)$



Atoms

 $A \subseteq CL(\varphi)$ is an atom (maximally consistent subset) if

- $\forall \neg \varphi' \in CL(\varphi), \ \varphi' \in A \ iff \ \neg \varphi' \notin A$
- $\forall \varphi_1 \lor \varphi_2 \in CL(\varphi), \varphi_1 \lor \varphi_2 \in A \ iff \ \varphi_1 \in A \ or \ \varphi_2 \in A$
- $\forall \varphi_1 \ U \ \varphi_2 \in CL(\varphi), \varphi_1 U \ \varphi_2 \in A \ iff \ \varphi_2 \in A \ or \ (\varphi_1 \in A \ and \ X \ \varphi_1 \ U \ \varphi_2 \in A)$

LTL to BA

States: set of atoms of φ

Transitions: $(A_1, X, A_2) \in \delta$ if and only if

- $A_1 \cap Voc(\varphi) = X$
- $\forall X \varphi_1 \in CL(\varphi)$, $X \varphi_1 \in A_1 \ iff \ \varphi_1 \in A_2$

Initial states: $\{A \mid \varphi \in A\}$

LTL to BA

When to accept?

- For every $\varphi_1 \ U \ \varphi_2$ in the atom, φ_2 has to eventually occur!
- A "good" state either does not have $\varphi_1 \ U \ \varphi_2$ or has φ_2
- Good states must be infinitely many:
- $F_i = \{A \in Atoms(\varphi) | \varphi_1 \ U \ \varphi_2 \notin A \ or \ \varphi_2 \in A\}$
 - Accepting states: F_i for every $\varphi_1 \ U \ \varphi_2$

Complexity: $2^{O(|\varphi|)}$

Model Checking

Model Checking Problem: Given a finite transition system TS and an LTL formula φ , does every sequence α generated by TS satisfies φ ?

Check:
$$L(A_{TS} \wedge A_{\neg \varphi}) = \emptyset$$
?

Complexity:
$$2^{O(|\varphi|)} \cdot |TS|$$

Implementation: NuSMV

Reactive Synthesis

Cinderella Game

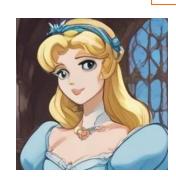
Cinderella

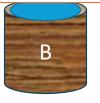
- Can empty two adjacent buckets
- If she can keep stepmother from winning, she wins

Stepmom

- Splits her water among all buckets
- If any overflows she wins

What is the B for which the advantage shifts from stepmother to Cinderella?





Stepmother's Perspective

She is trying to satisfy *F* overflow

What is the largest B* such that if B < B* she wins?

 $\exists Strategy, \forall cind, B \ B < B^* \Rightarrow win(Strategy, cind)$

Cinderella's perspective

She is trying to satisfy $G \neg overflow$

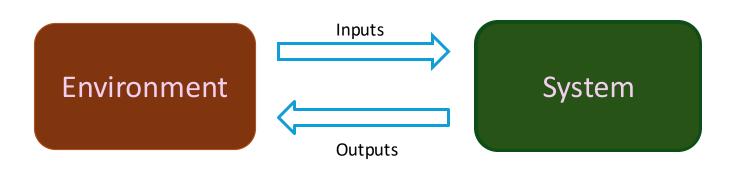
If B < 1 this is impossible

What is the smallest B^* such that if $B > B^*$ she is safe?

 $\exists Strategy, \forall mom, B \ B > B^* \Rightarrow win(Strategy, mom)$

$$B^* = 2$$

System evolution a tree of choices



3

Environment: choose an input from a set *I*

System: choose an output from a set *O*

Strategy: a function $f: I^* \to O$

Winning Condition: An MSO formula on $I \cup O$

Winning Strategy: all plays satisfy the winning condition

Realizability

Church's Problem (1957): the existence of winning strategy for specification expressed in MSO.

Synthesis: obtaining such winning strategy

MSO Realizability (Büchi-Landweber 1969): the MSO Realizability problem is decidable.

- If a winning strategy exists, then a finite-state strategy exists.
- Realizability algorithm produces finite-state strategies.

Rabin's Realizability Algorithm (1972)

Rabin Tree Automata on infinite k-ary trees: $A = (\Sigma, Q, q_0, \delta, F)$ where

- Σ is the alphabet
- *Q* is a finite set of states
- $Q_0 \subseteq Q$ is the initial state set
- $\delta: Q \times \Sigma \to 2^{Q^k}$ is a nondeterministic transition table
- $\alpha \subseteq 2^{2^Q \times 2^Q}$ is a set of accepting conditions

Acceptance Condition:

- Let $\alpha = \{(G_1, B_1), \dots, (G_l, B_l)\}, G_i, B_i \subseteq Q$
- Along every branch, for some i, G_i is visited infinitely often, and B_i is visited finitely often

Rabin's Realizability Algorithm (1972)

Emptiness of Tree Automata

- PTIME on finite trees (Doner 1965)
- NP-complete on infinite trees (Emerson-Jutla 1991)

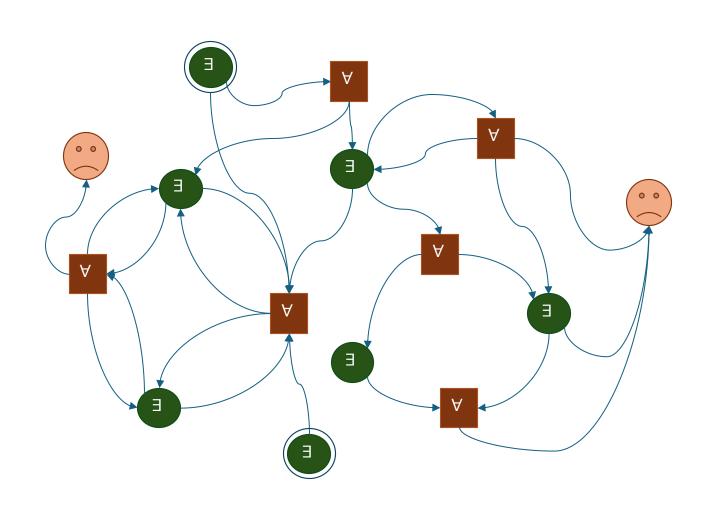
Real(φ):

- A strategy can be represented as labels on the infinite game tree
- Construct a Rabin tree automaton A_{φ} that accepts a labeled tree iff the labels represent a strategy, and the strategy is winning wrt to the condition φ
- Check the emptiness of A_{ω} ; if nonempty, extra a strategy from the witness

Complexity:

- non-elementary (the construction of A_{ω})
- 2EXPTIME-complete for LTL spec (Rosner 1990)

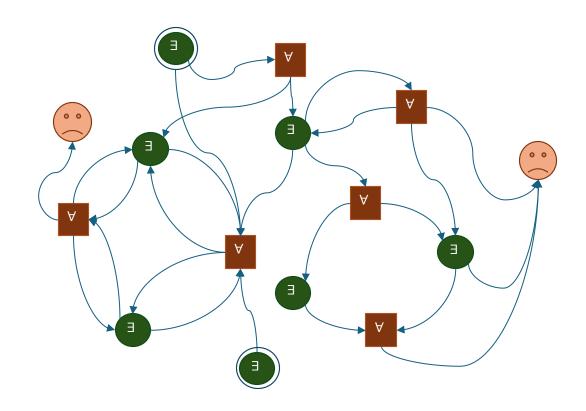
System/Environment as a graph



Two-person games

Winning condition:

- In general, LTL formulas
- Expensive! (double exponential)
- Reachability games
- Safety games
- 55

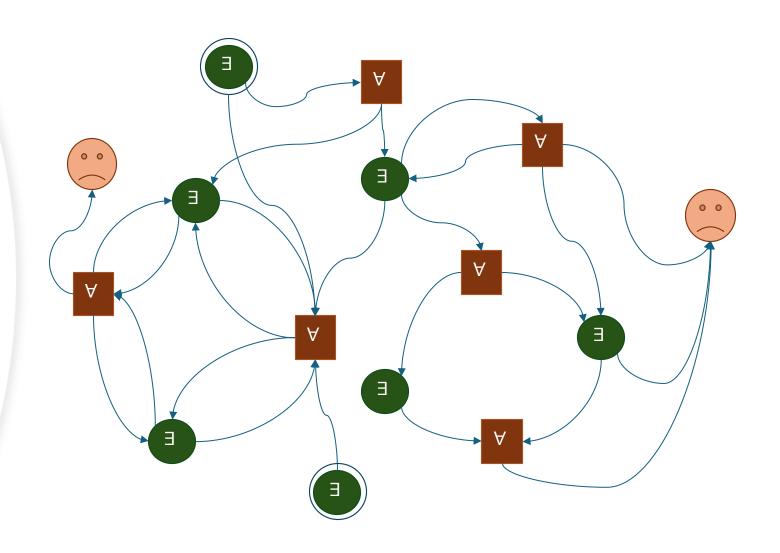


Specialized games

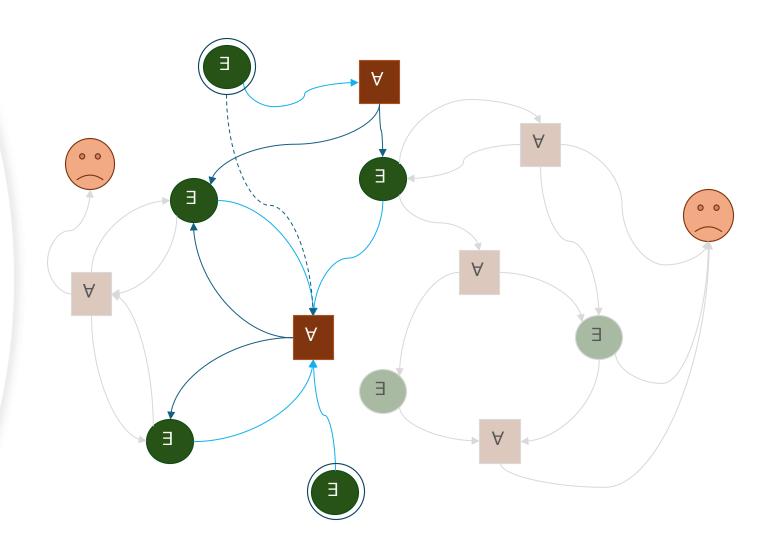
LTL provides a general language for specifications

- Safety Games (*G p*)
 - System "wins" if it can stay away from the bad states $\neg p$
- Reachability Games (F p)
 - System "wins" if it can reach a good state that satisfies p
 - *F p* are often referred to as *liveness* properties

Solving reachability games



Solving reachability games



Reachability games enjoy memoryless strategies

At every \exists state, the decision of what transition to make depends only on the current state

• easy to translate into code

Finite vs. Infinite Games

- Chess & Go
- Banach–Mazur game
- For finite games, one of the players has a winning strategy

Synthesis of AMBA AHB from Formal Spec

AMBA: Advanced Microcontroller Bus Architecture

AMBA AHB: a high-performance system backbone bus

- Formal Spec written in LTL
- Circuit automatically synthesized!
- AHB Slave synthesized in 21.5 second,
- (has 214 gates with area 429 square units)

