Please check out the following paper discussion schedule and prepare a 20-minute presentation followed by a 15-minute discussion.
Paper Presentation Schedule
Date | Paper | Discussion Leader |
---|---|---|
4/21/2025 | 9. Oracle-Guided Component-Based Program Synthesis. | MK |
4/21/2025 | 5. DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning. | AMN |
4/23/2025 | 3. Programmatic and Direct Manipulation, Together at Last. | JL |
4/23/2025 | 11. Superfusion: Eliminating Intermediate Data Structures via Inductive Synthesis. | OG |
4/28/2025 | 7. Temporal Stream Logic: Synthesis Beyond the Bools. | JA |
4/28/2025 | 2. What’s Decidable about Syntax-Guided Synthesis? | HyL |
4/30/2025 | 4. Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists. | YL |
4/30/2025 | 10. A Theory of Formal Synthesis via Inductive Learning. | JK |
5/12/2025 | 21. Unrealizability Logic | YK |
5/12/2025 | 23. Deepseek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search | YH |
5/14/2025 | 8. Automating String Processing in Spreadsheets Using Input-Output Examples. | HoL |
5/14/2025 | 15. Towards AI-Assisted Synthesis of Verified Dafny Methods. | TR |
5/19/2025 | 20. Programmatically Interpretable Reinforcement Learning. | JY |
5/19/2025 | 22. An In-Context Learning Agent for Formal Theorem-Proving | YN |
5/21/2025 | 6. Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? | TL |
5/21/2025 | 14. Scallop: A Language for Neurosymbolic Programming. | TTF |
List of Papers for Presentation
-
A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè, and S. D. Castellanos.
Translating Code Comments to Procedure Specifications.
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA), 2018.
[DOI] -
B. Caulfield, M. N. Rabe, S. A. Seshia, and S. Tripakis.
What’s Decidable about Syntax-Guided Synthesis?
arXiv preprint arXiv:1510.08393, 2016.
[arXiv] -
R. Chugh, B. Hempel, M. Spradlin, and J. Albers.
Programmatic and Direct Manipulation, Together at Last.
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2016.
[DOI] -
I. Drosos, T. Barik, P. J. Guo, R. DeLine, and S. Gulwani.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists.
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI), 2020.
[DOI] -
K. Ellis, C. Wong, M. Nye, M. Sablé-Meyer, L. Morales, L. Hewitt, L. Cary, and A. Solar-Lezama.
DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning.
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI), 2021.
[DOI] -
M. Endres, S. Fakhoury, S. Chakraborty, and S. K. Lahiri.
Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions?
Proceedings of the ACM on Software Engineering, Volume 1, Issue FSE. 2024.
[DOI] -
B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito.
Temporal Stream Logic: Synthesis Beyond the Bools.
In Computer Aided Verification (CAV), Lecture Notes in Computer Science, vol. 11561, 2019.
[DOI] -
S. Gulwani.
Automating String Processing in Spreadsheets Using Input-Output Examples.
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2011.
[DOI] -
S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari.
Oracle-Guided Component-Based Program Synthesis.
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering (ICSE), 2010.
[DOI] -
S. Jha and S. A. Seshia.
A Theory of Formal Synthesis via Inductive Learning.
Acta Informatica, 54(7), 2017.
[DOI] -
R. Ji, Y. Zhao, N. Polikarpova, Y. Xiong, and Z. Hu.
Superfusion: Eliminating Intermediate Data Structures via Inductive Synthesis.
Proceedings of the ACM on Programming Languages (PACMPL), Volume 8, Issue PLDI. 2024.
[DOI] -
P. Krogmeier and P. Madhusudan.
Languages with Decidable Learning: A Meta-theorem.
Proceedings of the ACM on Programming Languages (PACMPL), Volume 7, Issue OOPSLA1. 2023.
[DOI] -
W. Lee.
Combining the Top-Down Propagation and Bottom-Up Enumeration for Inductive Program Synthesis.
Proceedings of the ACM on Programming Languages (PACMPL), Volume 5, Issue POPL. 2021.
[DOI] -
Z. Li, J. Huang, and M. Naik.
Scallop: A Language for Neurosymbolic Programming.
Proceedings of the ACM on Programming Languages (PACMPL), Volume 7, Issue PLDI. 2023.
[DOI] -
M. R. H. Misu, C. V. Lopes, I. Ma, and J. Noble.
Towards AI-Assisted Synthesis of Verified Dafny Methods.
Proceedings of the ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (FSE), 2024.
[DOI] -
S. Pailoor, Y. Wang, and I. Dillig.
Semantic Code Refactoring for Abstract Data Types.
Proceedings of the ACM on Programming Languages (PACMPL), Volume 8, Issue POPL. 2024.
[DOI] -
R. Singh, R. Singh, Z. Xu, R. Krosnick, and A. Solar-Lezama.
Modular Synthesis of Sketches Using Models.
In Verification, Model Checking, and Abstract Interpretation (VMCAI), Lecture Notes in Computer Science, vol. 8318, 2014.
[DOI] -
S. Srivastava, S. Gulwani, and S. Foster.
From Program Verification to Program Synthesis.
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), 2010.
[DOI] -
E. Torlak and R. Bodík.
A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages.
Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2014.
[DOI] -
A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri.
Programmatically Interpretable Reinforcement Learning.
Proceedings of the 35th International Conference on Machine Learning (ICML), 2018.
[URL] -
J Kim, L. D’Antoni, T. Reps.
Unrealizability Logic.
Proceedings of the ACM on Programming Languages, Volume 7, Issue POPL, 2023.
[DOI] -
A. Thakur, G. Tsoukalas, Y. Wen, J. Xin, and S. Chaudhuri.
An In-Context Learning Agent for Formal Theorem-Proving.
In Proceedings of the 2025 Conference on Language Modeling (COLM), 2024. [URL] -
H. Xin, Z. Z. Ren, J. Song, Z. Shao, W. Zhao, H. Wang, B. Liu, L. Zhang, X. Lu, Q. Du, W. Gao, H. Zhang, Q. Zhu, D. Yang, Z. Gou, Z. F. Wu, F. Luo, and C. Ruan.
DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search.
In Proceedings of the 13th International Conference on Learning Representations (ICLR), 2025. [URL]